matplotlib如何绘制直方图、条形图和饼图
1 绘制直方图:
import matplotlib.pyplot as plt
import numpy as np
import matplotlib def hist1():
# 设置matplotlib正常显示中文和负号
matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus'] = False # 正常显示负号
data = np.random.randn(10000)
'''
data: 绘图数据
bins:直方图的长方形数目, 可选项, 默认为10
normed:是否将得到的直方图向量归一化, 可选项, 默认为0, 代表不归一化, 显示频数。 normed=1,表示归一化,显示频率
facecolor: 长方形的颜色
edgecolor: 长方形边框的颜色
alpha: 透明度
'''
plt.hist(data, bins=40, density=1, facecolor='blue', edgecolor='black', alpha=0.7)
# 显示横轴标签
plt.xlabel("区间")
# 显示纵轴标签
plt.ylabel("频数/频率")
# 显示图标数
plt.title("频数/频率分布直方图")
plt.show() if __name__ == '__main__':
hist1()
绘制的直方图效果如下:
1.2条形图
import matplotlib.pyplot as plt
import matplotlib
# 设置中文字体和负号正常显示
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False label_list = ['2014', '2015', '2016', '2017'] # 横坐标刻度显示值
num_list1 = [20, 30, 15, 35] # 纵坐标值1
num_list2 = [15, 30, 40, 20] # 纵坐标值2
x = range(len(num_list1))
"""
绘制条形图
left:长条形中点横坐标
height:长条形高度
width:长条形宽度,默认值0.8
label:为后面设置legend准备
"""
rects1 = plt.bar(left=x, height=num_list1, width=0.4, alpha=0.8, color='red', label="一部门")
rects2 = plt.bar(left=[i + 0.4 for i in x], height=num_list2, width=0.4, color='green', label="二部门")
plt.ylim(0, 50) # y轴取值范围
plt.ylabel("数量")
"""
设置x轴刻度显示值
参数一:中点坐标
参数二:显示值
"""
plt.xticks([index + 0.2 for index in x], label_list)
plt.xlabel("年份")
plt.title("某某公司")
plt.legend() # 设置题注
# 编辑文本
for rect in rects1:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height+1, str(height), ha="center", va="bottom")
for rect in rects2:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height+1, str(height), ha="center", va="bottom")
plt.show()
1.3 水平条形图:
import matplotlib.pyplot as plt
import matplotlib matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False price = [39.5, 39.9, 45.4, 38.9, 33.34]
"""
绘制水平条形图方法barh
参数一:y轴
参数二:x轴
"""
plt.barh(range(5), price, height=0.7, color='steelblue', alpha=0.8) # 从下往上画
plt.yticks(range(5), ['亚马逊', '当当网', '中国图书网', '京东', '天猫'])
plt.xlim(30,47)
plt.xlabel("价格")
plt.title("不同平台图书价格")
for x, y in enumerate(price):
plt.text(y + 0.2, x - 0.1, '%s' % y)
plt.show()
1.4 堆叠条形图
import matplotlib.pyplot as plt
import matplotlib matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False label_list = ['2014', '2015', '2016', '2017']
num_list1 = [20, 30, 15, 35]
num_list2 = [15, 30, 40, 20]
x = range(len(num_list1))
rects1 = plt.bar(left=x, height=num_list1, width=0.45, alpha=0.8, color='red', label="一部门")
rects2 = plt.bar(left=x, height=num_list2, width=0.45, color='green', label="二部门", bottom=num_list1)
plt.ylim(0, 80)
plt.ylabel("数量")
plt.xticks(x, label_list)
plt.xlabel("年份")
plt.title("某某公司")
plt.legend()
plt.show()
饼图
import matplotlib.pyplot as plt
import matplotlib matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False label_list = ["第一部分", "第二部分", "第三部分"] # 各部分标签
size = [55, 35, 10] # 各部分大小
color = ["red", "green", "blue"] # 各部分颜色
explode = [0.05, 0, 0] # 各部分突出值
"""
绘制饼图
explode:设置各部分突出
label:设置各部分标签
labeldistance:设置标签文本距圆心位置,1.1表示1.1倍半径
autopct:设置圆里面文本
shadow:设置是否有阴影
startangle:起始角度,默认从0开始逆时针转
pctdistance:设置圆内文本距圆心距离
返回值
l_text:圆内部文本,matplotlib.text.Text object
p_text:圆外部文本
"""
patches, l_text, p_text = plt.pie(size, explode=explode, colors=color, labels=label_list, labeldistance=1.1, autopct="%1.1f%%", shadow=False, startangle=90, pctdistance=0.6)
plt.axis("equal") # 设置横轴和纵轴大小相等,这样饼才是圆的
plt.legend()
plt.show()
matplotlib如何绘制直方图、条形图和饼图的更多相关文章
- 利用pandas读取Excel表格,用matplotlib.pyplot绘制直方图、折线图、饼图
利用pandas读取Excel表格,用matplotlib.pyplot绘制直方图.折线图.饼图 数据: 折线图代码: import pandas as pdimport matplotlib. ...
- python Matplotlib 系列教程(三)——绘制直方图和条形图
在本章节我们将学习如何绘制条形图和直方图 条形图与直方图的区别:首先,条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)则是固定的: 直方图是用面积表示各组频数的多少,矩形的高度表示每一组的 ...
- matplotlib绘制直方图【柱状图】
代码: def drawBar(): xticks = ['A', 'B', 'C', 'D', 'E']#每个柱的下标说明 gradeGroup = {'A':200,'B':250,'C':330 ...
- 关于matplotlib绘制直方图偏移的问题
在使用pyplot绘制直方图的时候我发现了一个问题,在给函数.hist()传参的时候,如果传入的组数不是刚刚好(就是说这个组数如果是使用(最大值-最小值)/组距计算出来,而这个数字不是整除得来而是取整 ...
- Python:matplotlib绘制直方图
使用hist方法来绘制直方图: 绘制直方图,最主要的是一个数据集data和需要划分的区间数量bins,另外你也可以设置一些颜色.类型参数: plt.hist(np.random.randn(1 ...
- MFC绘制直方图和饼图
转载原文: Normal 0 7.8 磅 0 2 false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNorma ...
- numpy和matplotlib绘制直方图
使用 Matplotlib Matplotlib 中有直方图绘制函数:matplotlib.pyplot.hist()它可以直接统计并绘制直方图.你应该使用函数 calcHist() 或 np.his ...
- NumPy使用 Matplotlib 绘制直方图
NumPy - 使用 Matplotlib 绘制直方图 NumPy 有一个numpy.histogram()函数,它是数据的频率分布的图形表示. 水平尺寸相等的矩形对应于类间隔,称为bin,变量hei ...
- Matplotlib 图形绘制
章节 Matplotlib 安装 Matplotlib 入门 Matplotlib 基本概念 Matplotlib 图形绘制 Matplotlib 多个图形 Matplotlib 其他类型图形 Mat ...
随机推荐
- yum install hadoop related client
yum list avaliable hadoop\* yum list installed yum repolist repo is in /etc/yum.repos.d yum install ...
- JDK 之 HttpClient(jdk11)
HttpClient 简介 java.net.http.HttpClient 是 jdk11 中正式启用的一个 http 工具类(其实早在 jdk9 的时候就已经存在了,只是处于孵化期),官方寓意为想 ...
- Java学习(十六)
今天先学了文本标签 <p> <strong>永远不要相信诺克萨斯人的血条!</strong><!--表示一段内容的重要性--> <br /> ...
- CF264BGood Sequences
CF264BGood Sequences 题面 大意 寻找最长递增字串,使得相邻两个数不互质. 思路 动态规划思想,ans记录当前的数以下标i为约数答案,使得需要填进去的数肯定与前一个数不互质.在开始 ...
- php多域名跳转nginx
当web服务器nginx已经配置好了网站根目录时,需要增加另外的域名.但是由于限制必须在原来的网站根目录下面,nginx已经无法实现.只能通过php index页面进行调试.如下面: define(' ...
- [bzoj3670]动物园
首先计算出s数组,s表示可以重复的前缀等于后缀的个数,显然有s[i]=s[next[i]]+1,因为有且仅有next的next满足这个条件. 然后直接暴力枚举所有next,直到它小于i的一半,这个时间 ...
- [gym102832J]Abstract Painting
考虑每一个圆即对应于区间$[x_{i}-r_{i},x_{i}+r_{i}]$,可以看作对于每一个区间,要求所有右端点严格比其小的区间不严格包含左端点 用$f_{i}$表示仅考虑右端点不超过$i$的区 ...
- [hdu6349]三原色图
考虑分别求出RG和GB的最小生成树,然后剩下的边中肯定选择较小的边加入这两颗生成树 1 #include<bits/stdc++.h> 2 using namespace std; 3 # ...
- 如何解决 ASP.NET Core 中的依赖问题
依赖性注入是一种技术,它允许我们注入一个特定类的依赖对象,而不是直接创建这些实例. 使用依赖注入的好处显而易见,它通过放松模块间的耦合,来增强系统的可维护性和可测试性. 依赖注入允许我们修改具体实现, ...
- Chrome 插件特性及实战场景案例分析
一.前言 提起Chrome扩展插件(Chrome Extension),每个人的浏览器中或多或少都安装了几个插件,像一键翻译.广告屏蔽.录屏等等,通过使用这些插件,可以有效的提高我们的工作效率:但有时 ...