bzoj#4722-由乃【倍增,抽屉原理,bitset】
正题
题目链接:https://darkbzoj.tk/problem/4722
题目大意
给出一个长度为\(n\)的序列值域为\([0,v)\),要求支持操作
- 询问一个区间能否找到两个没有交的非空下标集合使得这些位置的和加上集合的大小相等。
- 区间立方然后取模\(v\)。
\(1\leq n\leq 10^5,1\leq v\leq 1000\)
解题思路
考虑如果我们选出了两个有交的集合相等,那么我们把交的部分去掉就变成无交的了,所以无需考虑有没有交。
然后根据抽屉原理对于\(n\)个元素所有集合总共能表示出\(2^n\)个和,但是和最大只有\(n\times v\)所以如果\(2^n>n\times v\)时就肯定有解,那么此时会发现当\(v\)最大时\(n\)超过\(13\)就肯定有解。
如果元素个数小于或等于\(13\)时我们可以先预处理出一个倍增数组加上一个树状数组来统计每个数最终被修改了多少次就可以得到每个数的具体值了。然后考虑\(dp\),因为值域比较大可以用\(bitset\)优化就好了。
时间复杂度\(O(v\log m+m\log n+m\frac{13v}{\omega})\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#define lowbit(x) (x&-x)
using namespace std;
const int N=1e5+10;
int n,m,v,f[1100][18],t[N],a[N];
bitset<13001>b;
void Change(int x,int val){
while(x<=n){
t[x]+=val;
x+=lowbit(x);
}
return;
}
int Ask(int x){
int ans=0;
while(x){
ans+=t[x];
x-=lowbit(x);
}
return ans;
}
int Step(int x,int b){
for(int i=0;(1<<i)<=b;i++)
if((b>>i)&1)x=f[x][i];
return x;
}
int main()
{
scanf("%d%d%d",&n,&m,&v);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=0;i<v;i++)f[i][0]=i*i*i%v;
for(int j=1;(1<<j)<=n;j++)
for(int i=0;i<v;i++)
f[i][j]=f[f[i][j-1]][j-1];
while(m--){
int op,l,r;
scanf("%d%d%d",&op,&l,&r);
if(op==2)Change(l,1),Change(r+1,-1);
else{
if(r-l+1>13){puts("Yuno");continue;}
b.reset();b[0]=1;bool flag=0;
for(int i=l;i<=r;i++){
int w=Step(a[i],Ask(i))+1;
if((b&(b<<w)).any()){flag=1;break;}
b=b|(b<<w);
}
if(flag)puts("Yuno");
else puts("Yuki");
}
}
return 0;
}
bzoj#4722-由乃【倍增,抽屉原理,bitset】的更多相关文章
- 洛谷 P5527 - [Ynoi2012] NOIP2016 人生巅峰(抽屉原理+bitset 优化背包)
洛谷题面传送门 一道挺有意思的题,想到了某一步就很简单,想不到就很毒瘤( 首先看到这样的设问我们显然可以想到背包,具体来说题目等价于对于每个满足 \(i\in[l,r]\) 的 \(a_i\) 赋上一 ...
- CodeForces485A——Factory(抽屉原理)
Factory One industrial factory is reforming working plan. The director suggested to set a mythical d ...
- CF618F Double Knapsack 构造、抽屉原理
传送门 首先,选取子集的限制太宽了,子集似乎只能枚举,不是很好做.考虑加强限制条件:将"选取子集"的限制变为"选取子序列"的限制.在接下来的讨论中我们将会知道: ...
- 【9.23校内测试】【抽屉原理】【乱搞??(找众数】【Trie】
看到题目一开始想到的是一道求子集和的异或和,可以用$bitset$实现求子集和.然而这道题如果要强算子集和肯定是带不动的,况且还要算方案,所以尝试去找题目中的性质. 看到整除,很容易想到如果是一段区间 ...
- uva202:循环小数(循环节+抽屉原理)
题意: 给出两个数n,m,0<=n,m<=3000,输出n/m的循环小数表示以及循环节长度. 思路: 设立一个r[]数组记录循环小数,u[]记录每次的count,用于标记,小数计算可用 r ...
- hdu 3303 Harmony Forever (线段树 + 抽屉原理)
http://acm.hdu.edu.cn/showproblem.php?pid=3303 Harmony Forever Time Limit: 20000/10000 MS (Java/Othe ...
- 《Mathematical Olympiad——组合数学》——抽屉原理
抽屉原理可以说是组合数学中最简单易懂的一个原理了,其最简单最原始的一个表达形式:对于n本书放到n-1个抽屉中,保证每个抽屉都要有书,则必存在一个抽屉中有2本书.但是这个简单的原理在很多问题中都能够巧妙 ...
- poj2356 Find a multiple(抽屉原理|鸽巢原理)
/* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据 ...
- POJ- Find a multiple -(抽屉原理)
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6452 Accepted: 2809 Special Judge D ...
随机推荐
- C#中的几种锁:用户模式锁、内核模式锁、动态计数、监视锁
参考网址: https://blog.csdn.net/weixin_43989331/article/details/105356008 C#中的几种锁:用户模式锁.内核模式锁.动态计数.监视锁介绍 ...
- 【springcloud】API Gateway 的路由和过滤(Zuul--1)
转自:https://blog.csdn.net/pengjunlee/article/details/87084646 Zuul是什么? API Gateway 是随着微服务(Microservic ...
- IO异常--缓冲流--转换流--序列化流( IO流2 )
1.IO异常的处理 JDK7前处理:使用try...catch...finally 代码块,处理异常部分 // 声明变量 FileWriter fw = null; try { //创建流对象 fw ...
- Servlet体系及方法
时间:2016-11-11 15:07 --Servlet体系Servlet(interface): 实现类:GenericServlet.HttpServletServletConfig(in ...
- Python - 面向对象编程 - 三大特性之继承
继承 继承也是面向对象编程三大特性之一 继承是类与类的一种关系 定义一个新的 class 时,可以从某个现有的 class 继承 新的 class 类就叫子类(Subclass) 被继承的类一般称为父 ...
- Qt中的Q_PROPERTY宏浅析
1. Q_PROPERTY Qt提供了一个绝妙的属性系统,Q_PROPERTY()是一个宏,用来在一个类中声明一个属性property,由于该宏是qt特有的,需要用moc进行编译,故必须继承于QObj ...
- 操作系统的IO模型
IO操作根据设备类型一般分为内存IO,网络IO,和磁盘IO.其中内存IO的速度大大快于后两者,计算机的性能瓶颈一般不在于内存IO. 尽管网络IO可通过购买独享带宽和高速网卡来提升速度,可以使用RAID ...
- Nginx版本平滑升级方案
背景:由于负载均衡测试服务器中nginx版本过低,存在安全漏洞,查询相关修复漏洞资料,需要采取nginx版本升级形式对漏洞进行修复. Nginx平滑升级方案 1.案例采用版本介绍 旧版本 nginx- ...
- docker入门及常用命令
Docker简介 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源. Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布 ...
- MySQL——字符集
-- 字符集:是一个系统支持的所有抽象字符的集合 MySQL数据库的字符集(包括两个部分): 1.字符集:character 2.校对规则:collation MySQL中常见的字符集: utf8 l ...