正题

题目链接:https://darkbzoj.tk/problem/4722


题目大意

给出一个长度为\(n\)的序列值域为\([0,v)\),要求支持操作

  1. 询问一个区间能否找到两个没有交的非空下标集合使得这些位置的和加上集合的大小相等。
  2. 区间立方然后取模\(v\)。

\(1\leq n\leq 10^5,1\leq v\leq 1000\)


解题思路

考虑如果我们选出了两个有交的集合相等,那么我们把交的部分去掉就变成无交的了,所以无需考虑有没有交。

然后根据抽屉原理对于\(n\)个元素所有集合总共能表示出\(2^n\)个和,但是和最大只有\(n\times v\)所以如果\(2^n>n\times v\)时就肯定有解,那么此时会发现当\(v\)最大时\(n\)超过\(13\)就肯定有解。

如果元素个数小于或等于\(13\)时我们可以先预处理出一个倍增数组加上一个树状数组来统计每个数最终被修改了多少次就可以得到每个数的具体值了。然后考虑\(dp\),因为值域比较大可以用\(bitset\)优化就好了。

时间复杂度\(O(v\log m+m\log n+m\frac{13v}{\omega})\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#define lowbit(x) (x&-x)
using namespace std;
const int N=1e5+10;
int n,m,v,f[1100][18],t[N],a[N];
bitset<13001>b;
void Change(int x,int val){
while(x<=n){
t[x]+=val;
x+=lowbit(x);
}
return;
}
int Ask(int x){
int ans=0;
while(x){
ans+=t[x];
x-=lowbit(x);
}
return ans;
}
int Step(int x,int b){
for(int i=0;(1<<i)<=b;i++)
if((b>>i)&1)x=f[x][i];
return x;
}
int main()
{
scanf("%d%d%d",&n,&m,&v);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=0;i<v;i++)f[i][0]=i*i*i%v;
for(int j=1;(1<<j)<=n;j++)
for(int i=0;i<v;i++)
f[i][j]=f[f[i][j-1]][j-1];
while(m--){
int op,l,r;
scanf("%d%d%d",&op,&l,&r);
if(op==2)Change(l,1),Change(r+1,-1);
else{
if(r-l+1>13){puts("Yuno");continue;}
b.reset();b[0]=1;bool flag=0;
for(int i=l;i<=r;i++){
int w=Step(a[i],Ask(i))+1;
if((b&(b<<w)).any()){flag=1;break;}
b=b|(b<<w);
}
if(flag)puts("Yuno");
else puts("Yuki");
}
}
return 0;
}

bzoj#4722-由乃【倍增,抽屉原理,bitset】的更多相关文章

  1. 洛谷 P5527 - [Ynoi2012] NOIP2016 人生巅峰(抽屉原理+bitset 优化背包)

    洛谷题面传送门 一道挺有意思的题,想到了某一步就很简单,想不到就很毒瘤( 首先看到这样的设问我们显然可以想到背包,具体来说题目等价于对于每个满足 \(i\in[l,r]\) 的 \(a_i\) 赋上一 ...

  2. CodeForces485A——Factory(抽屉原理)

    Factory One industrial factory is reforming working plan. The director suggested to set a mythical d ...

  3. CF618F Double Knapsack 构造、抽屉原理

    传送门 首先,选取子集的限制太宽了,子集似乎只能枚举,不是很好做.考虑加强限制条件:将"选取子集"的限制变为"选取子序列"的限制.在接下来的讨论中我们将会知道: ...

  4. 【9.23校内测试】【抽屉原理】【乱搞??(找众数】【Trie】

    看到题目一开始想到的是一道求子集和的异或和,可以用$bitset$实现求子集和.然而这道题如果要强算子集和肯定是带不动的,况且还要算方案,所以尝试去找题目中的性质. 看到整除,很容易想到如果是一段区间 ...

  5. uva202:循环小数(循环节+抽屉原理)

    题意: 给出两个数n,m,0<=n,m<=3000,输出n/m的循环小数表示以及循环节长度. 思路: 设立一个r[]数组记录循环小数,u[]记录每次的count,用于标记,小数计算可用 r ...

  6. hdu 3303 Harmony Forever (线段树 + 抽屉原理)

    http://acm.hdu.edu.cn/showproblem.php?pid=3303 Harmony Forever Time Limit: 20000/10000 MS (Java/Othe ...

  7. 《Mathematical Olympiad——组合数学》——抽屉原理

    抽屉原理可以说是组合数学中最简单易懂的一个原理了,其最简单最原始的一个表达形式:对于n本书放到n-1个抽屉中,保证每个抽屉都要有书,则必存在一个抽屉中有2本书.但是这个简单的原理在很多问题中都能够巧妙 ...

  8. poj2356 Find a multiple(抽屉原理|鸽巢原理)

    /* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据 ...

  9. POJ- Find a multiple -(抽屉原理)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6452   Accepted: 2809   Special Judge D ...

随机推荐

  1. Java社区——个人项目开发笔记(二)

    1.B\S架构通信原理 浏览器,服务器之间产生通信,浏览器访问服务器,服务器返回一个HTML,浏览器会对HTML进行解析,并渲染相关的内容. 在解析过程中,会发现HTML里引用了css文件,js文件, ...

  2. vue + iview 怎样在vue项目下添加ESLint

    参考:https://segmentfault.com/a/1190000012019019?utm_source=tag-newest 使用iview框架的MenuGroup标签,vscode报红, ...

  3. 【C/C++】C/C++中的内存四区

    1 代码区 存放 CPU 执行的机器指令.通常代码区是可共享的(即另外的执行程序可以调用它),使其可共享的目的是对于频繁被执行的程序,只需要在内存中有一份代码即可.代码区通常是只读的,使其只读的原因是 ...

  4. WPF---控件模板(一)

    一.控件模板概述 控件的外观通过一个ControlTemplate类型的对象确定,该对象指定了组成一个控件的显示的各种视觉元素. 当WPF创建一个控件时,会创建一个控件类(模板父)的实例,然后实例化通 ...

  5. C#多线程---Mutex类实现线程同步

    一.例子 1 using System; 2 using System.Collections.Generic; 3 using System.Linq; 4 using System.Text; 5 ...

  6. SpringBoot2.0 防止XSS攻击

    一:什么是XSS XSS攻击全称跨站脚本攻击,是一种在web应用中的计算机安全漏洞,它允许恶意web用户将代码植入到提供给其它用户使用的页面中. 你可以自己做个简单尝试: 1. 在任何一个表单内,你输 ...

  7. springboot静态资源路径制定

    spring.resources.static-location参数指定了Spring Boot-web项目中静态文件存放地址, 该参数默认设置为: classpath:/static, classp ...

  8. Kickstart部署之FTP架构

    原文转自:https://www.cnblogs.com/itzgr/p/10029551.html作者:木二 目录 一 准备 1.1 完整架构:Kickstart+DHCP+VSFTP+TFTP+P ...

  9. 快速排序(C++)

    快速排序 快速排序是面试中经常问到的排序算法 基本思想:通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小, 则可分别对这两部分记录继续进行排序,以达到整个序 ...

  10. 【良心保姆级教程】java手把手教你用swing写一个学生的增删改查模块

    很多刚入门的同学,不清楚如何用java.swing去开发出一个系统? 不清楚如何使用java代码去操作数据库进行增删改查一些列操作,不清楚java代码和数据库(mysql.sqlserver)之间怎么 ...