[atAGC004F]Namori
考虑树的情况,将其以任意一点为根建树
对于每一个节点,考虑其要与父亲操作几次才能使子树内均为黑色,这可以用形如$(0/1,x)$的二元组来描述,其中0/1即表示其要求操作时父亲是白色/黑色且要操作$x$次
考虑一个叶子,其二元组显然为$(0,1)$,接下来每一个点即可以交替将儿子中的$(0/1,x)$变为$(0/1,x-1)$
(先以白色点操作$(0,x)$,操作后变为黑色,再以黑色点操作$(1,x)$……)
最终,将剩下的合并(第一元必然相同,第二元直接相加),那么该节点即需在另一个状态下与其父亲操作,另外最后还需要额外以白色操作一次
换言之,假设合并后的二元组为$(p,x)$(其中$x\ge 0$,且若$x=0$则不妨令$p=1$),那么根据上述分析该点上的二元组即为$\begin{cases}(1,x-1)&(p=0)\\(0,x+1)&(p=1)\end{cases}$
关于答案,若根节点上的二元组第二维不为0显然无解,否则考虑每一个节点与父亲操作的次数,即为该点上二元组的第二维,显然将对所有节点求和即可
时间复杂度为$o(n)$,可以通过
事实上,上述二元组可以直接用一个整数描述,即将$(0/1,x)$分别看作$\pm x$,则转移即$g_{i}=1-\sum_{son}g_{son}$,最终答案也即$\sum_{i}|g_{i}|$(特别的,若$g_{rt}\ne 0$则无解,其中$rt$为根),两者等价性显然
考虑基环树的情况,将整个基环当作根,并删去基环上的边后得到若干棵子树(仍以基环上的点为根),对每一棵子树仍用上述方式计算得到根的$g_{i}$,最终即可得到一个长为$l$(其中$l$为环长)的序列
记该序列为$a_{i}$,此时问题即将相邻两个$a_{i}$(注意首尾也相连)同时$\pm 1$,并使得最终$a_{i}$均为0
若$\sum_{i=1}^{l}a_{i}\not\equiv 0(mod\ 2)$显然无解(操作不改变奇偶性),否则对$l$的奇偶性分类讨论:
1.若$l$为奇数,考虑奇偶数位的差值,除了首尾操作以外不会改变该值,而首尾操作恰会使该值$\pm 2$,由此不难确定首尾操作形式即次数,进而操作后将首尾断开,从前往后依次使得$a_{i}$为0即可(最终$a_{l}$一定为0)
2.若$l$为偶数,注意到奇数位和偶数位差值不变,因此初始两者必须相同
枚举首尾操作使得$a_{1}$和$a_{l}$同时减$z$,之后即将首尾断开并从前往后依次使得$a_{i}$为0
不难得到(首尾断开后)$a_{i}$清0的代价即$\sum_{i=1}^{l}\abs{\sum_{j=1}^{i}(-1)^{i-j}a_{j}}$,对每个$i$预处理出该值为$S_{i}$(减去$z$前),那么修改的影响即将奇数项减去$z$、偶数项(除$l$以外)加上$z$
将$S_{i}$偶数项取相反数(奇数项不变)得到$S'_{i}$,此时即求$|S_{l}|+\min_{z}\left(\sum_{i=1}^{l-1}|S'_{i}-z|+|z|\right)$
最后一项可以看作$|0-z|$,那么显然取$z$为$S'_{i}$(其中$1\le i\le l-1$)和0的中位数即可
时间复杂度也为$o(n)$,可以通过
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define ll long long
5 vector<int>v0,v[N];
6 int n,m,x,y,st[N],vis[N];
7 ll sum,ans,a[N],g[N];
8 void dfs(int k,int fa){
9 st[++st[0]]=k,vis[k]=1;
10 for(int i=0;i<v[k].size();i++)
11 if (v[k][i]!=fa){
12 if (!vis[v[k][i]])dfs(v[k][i],k);
13 else{
14 if (vis[v[k][i]]==2)continue;
15 for(int j=st[0];st[j]!=v[k][i];j--)v0.push_back(st[j]);
16 v0.push_back(v[k][i]);
17 }
18 }
19 st[0]--,vis[k]=2;
20 }
21 void dp(int k){
22 vis[k]=g[k]=1;
23 for(int i=0;i<v[k].size();i++)
24 if (!vis[v[k][i]]){
25 dp(v[k][i]);
26 g[k]-=g[v[k][i]];
27 }
28 }
29 int main(){
30 scanf("%d%d",&n,&m);
31 for(int i=1;i<=m;i++){
32 scanf("%d%d",&x,&y);
33 v[x].push_back(y);
34 v[y].push_back(x);
35 }
36 dfs(1,0);
37 memset(vis,0,sizeof(vis));
38 if (v0.empty()){
39 dp(1);
40 if (g[1])printf("-1\n");
41 else{
42 for(int i=1;i<=n;i++)ans+=abs(g[i]);
43 printf("%lld\n",ans);
44 }
45 return 0;
46 }
47 int l=v0.size();
48 for(int i=0;i<l;i++)vis[v0[i]]=2;
49 for(int i=0;i<l;i++){
50 dp(v0[i]);
51 a[i+1]=g[v0[i]];
52 }
53 for(int i=1;i<=n;i++)ans+=abs(g[i]);
54 for(int i=1;i<=l;i++){
55 ans-=abs(a[i]);
56 if (i&1)sum+=a[i];
57 else sum-=a[i];
58 }
59 if (sum&1){
60 printf("-1\n");
61 return 0;
62 }
63 if (l&1){
64 ans+=(abs(sum)>>1);
65 a[1]-=(sum>>1),a[l]-=(sum>>1);
66 for(int i=1;i<l;i++){
67 ans+=abs(a[i]);
68 a[i+1]-=a[i];
69 }
70 printf("%lld\n",ans);
71 return 0;
72 }
73 if (sum){
74 printf("-1\n");
75 return 0;
76 }
77 for(int i=1;i<=l;i++)a[i]-=a[i-1];
78 ans+=abs(a[l]),a[l]=0;
79 for(int i=2;i<=l;i+=2)a[i]=-a[i];
80 sort(a+1,a+l+1);
81 for(int i=1;i<=l;i++)
82 if (i<=(l>>1))ans+=a[l>>1]-a[i];
83 else ans+=a[i]-a[l>>1];
84 printf("%lld\n",ans);
85 return 0;
86 }
[atAGC004F]Namori的更多相关文章
- [Arc079F] Namori Grundy
[Arc079F] Namori Grundy 题目大意: 一个有向弱联通环套树. 一个点的sg值等于出边连向点的sg值的mex. 试问是否有办法给每个点分配sg值? 试题分析 题目大意把一些难点跳过 ...
- 2017国家集训队作业[agc004f]Namori
2017国家集训队作业[agc004f]Namori 题意: 给你一颗树或环套树,树上有\(N\)个点,有\(M\)条边.一开始,树上的点都是白色,一次操作可以选择一条端点颜色相同的边,使它的端点颜色 ...
- AGC004F Namori 树形DP、解方程(?)
传送门 因为不会列方程然后只会树上的,被吊打了QAQ 不难想到从叶子节点往上计算答案.可以考虑到可能树上存在一个点,在它的儿子做完之后接着若干颜色为白色的儿子,而当前点为白色,只能帮助一个儿子变成黑色 ...
- 洛谷AT2046 Namori(思维,基环树,树形DP)
洛谷题目传送门 神仙思维题还是要写点东西才好. 树 每次操作把相邻且同色的点反色,直接这样思考会发现状态有很强的后效性,没办法考虑转移. 因为树是二分图,所以我们转化模型:在树的奇数层的所有点上都有一 ...
- AT2046 Namori 图论
正解: 解题报告: 传送门! 首先看数据范围可以发现要么是棵树要么是个奇环要么是个偶环 然后就分类讨论分别看下这几个情况 首先是棵树的 首先可以想到树的情况就是个二分图,所以不妨把颜色重定义,让奇数层 ...
- Atcoder:AGC004F Namori
传送门 先考虑树,树是一个二分图. 看到是二分图并且每次是对两边的同色的点反色可以想到转化:让奇数层的点为黑,偶数为白,变成每次可以交换两个点的颜色. 把黑看成 \(-1\),白看成 \(1\),那么 ...
- 【ARC079F】Namori Grundy
Description 题目链接 大意:给一张基环外向树.要求给每一个点确定一个值,其值为所有后继点的\(\text{mex}\).求是否存在确定权值方案. Solution 首先,对于叶子节点,其权 ...
- [arc079f] Namori Grundy 分类讨论
Description 给给全有一个NN个点NN条边的有向图,点的的编号从11到NN 给给全的图有NN条边,形如:(p1,1),(p2,2),...,(pN,N)(p1,1),(p2,2),...,( ...
- 【agc004F】Namori
Portal -->agc004F Solution 好神仙的转化qwq 首先我们可以先考虑\(m=n-1\)的情况下,也就是树的情况下要怎么做 我们可以将这个问题转化一下:我们对这颗 ...
随机推荐
- 数据应用的变与不变,ShardingSphere 正在影响未来数字体验的建设理念
近年来关于底层数据库的开源产品越来越多,它们也受到了许多资本的青睐. 伴随着移动互联网催生的数字化场景爆发,云计算.大数据等技术逐渐有了更加广阔的应用场景.在云计算和大数据经过十年的追赶式发展后,不只 ...
- 题解 CF555E Case of Computer Network
题目传送门 题目大意 给出一个\(n\)个点\(m\)条边的无向图,有\(q\)次有向点对\((s,t)\),问是否存在一种方法定向每条边使得每个点对可以\(s\to t\). \(n,m,q\le ...
- MySQL ENGINES 引擎
引擎 存储引擎是数据库底层软件组织. 数据库管理系统(DBMS)使用数据引擎进行创建.查询.更新和删除数据. 不同的存储引擎提供不同的存储机制.索引技巧.锁定水平等功能. MySQL的核心就是存储引擎 ...
- 浅尝装饰器-@staticmethod 和@classmethod
[写在前面] 本帖归属于装饰器单元的学习,可以点击关键词'装饰器'查看其他博文讲解 [正文部分] 说到装饰器一开始我觉得很陌生,看了一下别人的博客讲解,原来以前学习遇到的静态方法@staticmeth ...
- 分布式系统ID
Leaf--美团点评分布式ID生成系统 前言 在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识.如在美团点评的金融.支付.餐饮.酒店.猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需 ...
- CentOS 用户与群组
目录 1.用户管理 1.1.切换用户 1.2.添加用户 1.3.删除用户 1.4.修改用户 2.群组管理 2.1.查看群组 2.2.添加群组 2.3.删除群组 2.4.修改群组 1.用户管理 Linu ...
- 【UE4 设计模式】观察者模式 Observer Pattern
概述 描述 定义对象间的一种一对多依赖关系,使得每当一个对象状态发生改变时,其相关依赖对象皆得到通知并被自动更新.观察者模式又叫做 发布-订阅(Publish/Subscribe)模式 模型-视图(M ...
- [Git系列] 前言
Git 简介 Git 是一个重视速度的分布式版本控制和代码管理系统,最初是由 Linus Torvalds 为开发 Linux 内核而设计并开发的,是一款遵循二代 GUN 协议的免费软件.这一教程会向 ...
- Beta阶段第四次会议
Beta阶段第四次会议 时间:2020.5.20 完成工作 姓名 工作 难度 完成度 ltx 1.对小程序进行修改2.提出相关api修改要求 轻 85% xyq 1.设计所需api文档2.编写相关技术 ...
- linux与windows下文件编码问题
注:转换操作均在Linux终端进行操作 DOS与Unix格式转换 安装工具:dos2unix.unix2dos # ubuntu apt-get install dos2unix apt-get in ...