标算是状压dp+打表,前者时间复杂度为$o(n^{2}2^{n})$,并通过打表做到$o(1)$

参考loj2265中关于杨表的相关知识,不难发现答案即$\frac{\sum_{a\vdash n}a_{1}f_{a}^{2}}{n!}$

记$P(n)$为$a\vdash n$的方案数,后者$f_{a}$可以$o(n)$计算,总复杂度即$o(nP(n))$

不难发现$P(n)$即为A000041,有$P(28)=3718$(甚至$P(60)\le 10^{6}$),显然可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 30
4 #define mod 998244353
5 #define ll long long
6 vector<int>v;
7 int n,ans,inv[N];
8 void calc(int k,int lst){
9 if (!k){
10 int s=1;
11 for(int i=0;i<v.size();i++)
12 for(int j=1;j<=v[i];j++){
13 int tot=v[i]-j;
14 for(int k=i;k<v.size();k++)
15 if (j<=v[k])tot++;
16 s=(ll)s*inv[tot]%mod;
17 }
18 for(int i=1;i<=n;i++)s=(ll)s*i%mod;
19 s=(ll)v[0]*s%mod*s%mod;
20 ans=(ans+s)%mod;
21 return;
22 }
23 for(int i=min(k,lst);i;i--){
24 v.push_back(i);
25 calc(k-i,i);
26 v.pop_back();
27 }
28 }
29 int main(){
30 inv[0]=inv[1]=1;
31 for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
32 scanf("%d",&n);
33 calc(n,n);
34 for(int i=1;i<=n;i++)ans=(ll)ans*inv[i]%mod;
35 printf("%d\n",ans);
36 return 0;
37 }

[luogu4484]最长上升子序列的更多相关文章

  1. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  2. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  3. [Data Structure] LCSs——最长公共子序列和最长公共子串

    1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...

  4. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  5. LintCode 77: 最长公共子序列

    public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common s ...

  6. 最长下降子序列O(n^2)及O(n*log(n))解法

    求最长下降子序列和LIS基本思路是完全一样的,都是很经典的DP题目. 问题大都类似于 有一个序列 a1,a2,a3...ak..an,求其最长下降子序列(或者求其最长不下降子序列)的长度. 以最长下降 ...

  7. 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题

    先要搞明白:最长公共子串和最长公共子序列的区别.    最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...

  8. [BZOJ3173][Tjoi2013]最长上升子序列

    [BZOJ3173][Tjoi2013]最长上升子序列 试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上 ...

  9. 3173: [Tjoi2013]最长上升子序列

    原题:http://www.lydsy.com/JudgeOnline/problem.php?id=3173 题解:促使我写这题的动力是,为什么百度遍地是Treap,黑人问号??? 这题可以用线段树 ...

随机推荐

  1. 10.6.2 sendfile

    1.传统Linux中 I/O 的问题 2.传统的 Linux 系统的标准 I/O 接口( read. write)是基于数据拷贝的,也就是数据都是 copy_to_user 或者 copy_from_ ...

  2. windos10环境下编译python3版pjsua库

    环境:windows10_x64python3.9_x64pjsua-2.10vs2015 pjsua编译参考这里: https://www.cnblogs.com/MikeZhang/p/pjsip ...

  3. 题解 AVL 树

    link Description 给出一个 \(n\) 个点的 AVL 树,求保留 \(k\) 个点使得字典序最小. \(n\le 5\times 10^5\) Solution 因为我很 sb ,所 ...

  4. noip2017D1T3逛公园(拓扑图上dp,记忆化搜索)

    QWQ前几天才刚刚把这个D1T3写完 看着题解理解了很久,果然我还是太菜了QAQ 题目大意就是 给你一个n个点,m条边的图,保证1能到达n,求从1到n的 (设1到n的最短路长度是d)路径长度在[d,d ...

  5. 内网渗透DC-4靶场通关

    个人博客:点我 DC系列共9个靶场,本次来试玩一下DC-4,只有一个flag,下载地址. 下载下来后是 .ova 格式,建议使用vitualbox进行搭建,vmware可能存在兼容性问题.靶场推荐使用 ...

  6. Framework - 性能统计

    摘要 近期对接客户时,客户方希望提供 SDK 的性能.内存.隐私支持等一些数据,所以就对 SDK 进行了一些性能测试. 在用表格统计整理这些数据时,突然发现,经常用统计的方式看 SDK 的相关数据,似 ...

  7. Java/JDK/J2SE

    Java8与JDK1.8与JDK8与J2SE8与J2SE1.8的区别是什么? Java是面向对象的编程语言,在我们开发Java应用的程序员的专业术语里,Java这个单词其实指的是Java开发工具,也就 ...

  8. 微信小程序的支付流程

    一.前言 微信小程序为电商类小程序,提供了非常完善.优秀.安全的支付功能 在小程序内可调用微信的API完成支付功能,方便.快捷 场景如下图所示: 用户通过分享或扫描二维码进入商户小程序,用户选择购买, ...

  9. 通过简单例子 | 快速理清 UML 中类与类的六大关系

    关于封面:我想我们都会离开 类与类之间的六大关系 泛化 ( Generalization ) ---> 表继承关系 实现 ( Realization ) 关联 ( Association ) 聚 ...

  10. Spring Cloud Gateway GatewayFilter的使用

    Spring Cloud Gateway GatewayFilter的使用 一.GatewayFilter的作用 二.Spring Cloud Gateway内置的 GatewayFilter 1.A ...