欧式距离:

l2范数:

l2正则化:

l2-loss(也叫平方损失函数):

http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Mimicking_Very_Efficient_CVPR_2017_paper.pdf

总结:l2范数和欧式距离很像,都是开根号。l2正则化和l2-loss都是直接开平方。上面这篇mimic的paper,就是用的l2-loss,可以看到他写的公式就是在l2范数上开平方。也可以这么理解,对于loss,需要求梯度,如果有根号后,梯度的计算就变得复杂了。

l2-loss,l2正则化,l2范数,欧式距离的更多相关文章

  1. L1 loss L2 loss

    https://www.letslearnai.com/2018/03/10/what-are-l1-and-l2-loss-functions.html http://rishy.github.io ...

  2. [PCL]3 欧式距离分类EuclideanClusterExtraction

    EuclideanClusterExtraction这个名字起的很奇怪,欧式距离聚类这个该如何理解?欧式距离只是一种距离测度的方法呀!有了一个Cluster在里面,我以为是某一种聚类算法,层次聚类?k ...

  3. 剑指Offer——网易笔试之不要二——欧式距离的典型应用

    剑指Offer--网易笔试之不要二--欧式距离的典型应用 前言 欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的 ...

  4. 机器学习进阶-疲劳检测(眨眼检测) 1.dist.eculidean(计算两个点的欧式距离) 2.dlib.get_frontal_face_detector(脸部位置检测器) 3.dlib.shape_predictor(脸部特征位置检测器) 4.Orderdict(构造有序的字典)

    1.dist.eculidean(A, B) # 求出A和B点的欧式距离 参数说明:A,B表示位置信息 2.dlib.get_frontal_face_detector()表示脸部位置检测器 3.dl ...

  5. L1与L2损失函数和正则化的区别

    本文翻译自文章:Differences between L1 and L2 as Loss Function and Regularization,如有翻译不当之处,欢迎拍砖,谢谢~   在机器学习实 ...

  6. L1 loss, L2 loss以及Smooth L1 Loss的对比

    总结对比下\(L_1\) 损失函数,\(L_2\) 损失函数以及\(\text{Smooth} L_1\) 损失函数的优缺点. 均方误差MSE (\(L_2\) Loss) 均方误差(Mean Squ ...

  7. l1 l2 loss

    衡量预测值与真实值的偏差程度的最常见的loss: 误差的L1范数和L2范数 因为L1范数在误差接近0的时候不平滑,所以比较少用到这个范数 L2范数的缺点是当存在离群点(outliers)的时候,这些点 ...

  8. 正则化--L2正则化

    请查看以下泛化曲线,该曲线显示的是训练集和验证集相对于训练迭代次数的损失. 图 1 显示的是某个模型的训练损失逐渐减少,但验证损失最终增加.换言之,该泛化曲线显示该模型与训练集中的数据过拟合.根据奥卡 ...

  9. L2与L1正则化理解

    https://www.zhihu.com/question/37096933/answer/70507353 https://blog.csdn.net/red_stone1/article/det ...

随机推荐

  1. redis使用及配置之缓存详解

    redis使用及配置之缓存详解 1.Redis的介绍 Redis是一个Key-Value存储系统.它支持存储的value类型有:string(字符串),list(链表), set(无序集合),zset ...

  2. 最短路问题(dijkstral 算法)(优化待续)

    迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向 ...

  3. C# 后台处理图片的几种方式

    第一种: 将上传图片直接保存到本地 var supportedTypes = new[] { "jpg", "jpeg", "png", & ...

  4. 在js里面比较大小必须先转换成number

    利用js里面的Number函数从对象转换成数值

  5. LOJ572: Misaka Network 与求和

    传送门 假设 \(f^k(i)\) 就是 \(f(i)\) 莫比乌斯反演得到 \[ans=\sum_{i=1}^{N}\lfloor\frac{N}{i}\rfloor^2\sum_{d|i}f(d) ...

  6. 多项式乘法,FFT与NTT

    多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...

  7. Python之面向对象继承复习

    总结:self是谁就从谁开始寻找

  8. String class fetch functionality

    String类的获取功能: package com.itheima_04; /* * String类的获取功能: * int length():获取字符串的长度,其实也就是字符个数 * char ch ...

  9. Android 虚拟多开系列一——技术调研

    参考链接:http://weishu.me Github源码链接:             国内Xposed框架源码链接                               VirtualAp ...

  10. Linux内核 网络数据接收流程图

      各层主要函数以及位置功能说明:       1)sock_read:初始化msghdr{}的结构类型变量msg,并且将需要接收的数据存放的地址传给msg.msg_iov->iov_base. ...