Description

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验。 
本题中我们将考虑游戏的一个简化版模型。 
玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为 1 ~  n。本题中,顺序已经确定,即为输入的顺序。
每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 
一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌: 
1如果这张卡牌在这一局游戏中已经发动过技能,则 
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 
否则(是最后一张),结束这一轮游戏。 
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张 
2.1将其以 pi的概率发动技能。 
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。 
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,考虑下一张卡牌。 
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。 

Input

输入文件的第一行包含一个整数 T,代表测试数据组数。

接下来一共 T 组数据。 
每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和游戏的轮数。 
接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。 

Output

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。

建议输出10 位小数。 

Sample Input

1
3 2
0.5000 2
0.3000 3
0.9000 1

Sample Output

3.2660250000

HINT

一共有 13 种可能的情况:

1.  第一轮中,第 1张卡牌发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.15,伤害为5。 
2.  第一轮中,第 1张卡牌发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.315,伤害为3。 
3.  第一轮中,第 1张卡牌发动技能;第二轮不发动技能; 
概率为 0.035,伤害为2。 
4.  第一轮中,第 2张卡牌发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.075,伤害为5。 
5.  第一轮中,第 2张卡牌发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.0675,伤害为4。 
6.  第一轮中,第 2张卡牌发动技能;第二轮不发动技能; 
概率为 0.0075,伤害为3。 
7.  第一轮中,第 3张卡牌发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.1575,伤害为3。 
8.  第一轮中,第 3张卡牌发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.04725,伤害为4。 
9.  第一轮中,第 3张卡牌发动技能;第二轮不发动技能; 
概率为 0.11025,伤害为1。 
10.  第一轮不发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.0175,伤害为2。 
11.  第一轮不发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.00525,伤害为3。 
12.  第一轮不发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.011025,伤害为1。 
13.  第一轮不发动技能;第二轮亦不发动技能; 
概率为 0.001225,伤害为0。 
造成伤害的期望值为概率与对应伤害乘积之和,为 3.266025。
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。  
除非备注中有特殊说明,数据中 pi与di均为随机生成。 
请注意可能存在的实数精度问题,并采取适当措施。

Solution

设$f[i][j]$表示到达当前判断是在第$i$张牌,还有$j$轮的概率。
当第$i-1$张没有打出来的时候,$f[i][j]+=f[i-1][j]*(1-p[i-1])^j$
当第$i-1$张成功打出来的时候,$f[i][j]+=f[i-1][j+1]*(1-(1-p[i-1])^j)$,且统计一下答案。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std; int n,T,r,d[];
double Pow[][],p[],ans,f[][]; int main()
{
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&r);
for (int i=; i<=r; ++i) Pow[][i]=;
for (int i=; i<=n; ++i)
{
scanf("%lf%d",&p[i],&d[i]); Pow[i][]=;
for (int j=; j<=r; ++j)
Pow[i][j]=Pow[i][j-]*(-p[i]);
}
ans=;
memset(f,,sizeof(f));
f[][r]=;
for (int i=; i<=n; ++i)
for (int j=; j<=r; ++j)
{
f[i][j]=f[i-][j]*Pow[i-][j]+f[i-][j+]*(-Pow[i-][j+]);
ans+=f[i][j]*(-Pow[i][j])*d[i];
}
printf("%.10lf\n",ans);
}
}

BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)的更多相关文章

  1. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

  2. 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)

    传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...

  3. [HNOI2015]亚瑟王(概率期望,DP)

    题目大意:很清晰了,不写了. $1\le T\le 444,1\le n\le 220,0\le r\le 132,0<p_i<1,0\le d_i\le 1000$. $p_i$ 和 $ ...

  4. BZOJ 4008: [HNOI2015]亚瑟王 [DP 概率 !!!]

    传送门 题意: $r$轮$n$张卡牌,每一轮依次考虑每张卡牌,$p_i$概率发动造成$d_i$伤害后结束本轮或者继续考虑下一张 每张卡牌发动过之后以后都会跳过 求$r$轮之后的期望伤害 看了一节课出题 ...

  5. bzoj4008: [HNOI2015]亚瑟王 dp

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4008 思路 神仙啊 \(f[i][j]表示第i个点有j次机会(不管成功与否)\) \(f ...

  6. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

  7. BZOJ 4008: [HNOI2015]亚瑟王( dp )

    dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...

  8. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  9. 洛谷 P3239 / loj 2112 [HNOI2015] 亚瑟王 题解【期望】【DP】

    ???看不懂的期望DP 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚 ...

随机推荐

  1. C#Json数据类型

    引用所对应框架的类库文件,下载地址:http://json.codeplex.com/ 在一般处理程序axhx中: 引用的命名空间: using System.IO;using Newtonsoft. ...

  2. visualvm 插件 visual gc 使用介绍

    visual gc 是 visualvm 中的图形化查看 gc 状况的插件. 具体详细介绍可参照: http://www.oracle.com/technetwork/java/visualgc-13 ...

  3. hdu 4190 Distributing Ballot Boxes 二分

    Distributing Ballot Boxes Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  4. 基于.Net下整合FastReport,实现条码标签批量打印

    一. 准备工作 1. 点击此下载支持.Net4.0的 FastReport ,安装后并破解 2. VS2012 工具箱中,新建选项卡,添加 %安装目录%\Framework 4.0\FastRepor ...

  5. C++11:实用特性

    今天逛cplusplus.com发现C++还真多了不少方便使用的特性,先了解些最常用的 初始化列表 vector<,,,}); vector<pair<int, int> &g ...

  6. Code Signal_练习题_Are Similar?

    Two arrays are called similar if one can be obtained from another by swapping at most one pair of el ...

  7. stm32f10x单片机进阶--spi使用

      使用SPI与外部flash(MX25L6406EM21)IC通信 连接方式                    如上图所示,MCU通过SPI2与外部flash芯片进行相连接. MCU spi2初 ...

  8. USACO06DEC Milk Patterns——Solution

    题目描述 Farmer John has noticed that the quality of milk given by his cows varies from day to day. On f ...

  9. PHP new StdClass() 创建空对象

    PHP可以用 $object = new StdClass(); 创建一个没有成员方法和属性的空对象.很多时候,程序员们会将一些参数配置项之类的信息放在数组中使用,但是数组操作起来并不是很方便,很多时 ...

  10. Swiper轮播图

    今天咱们来说一下.Swiper轮播图. 超级简单的: 翠花,上代码:   <!DOCTYPE html>   <html lang="en">   < ...