题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2660

当然可以看出  选了第 i 个斐波那契数<=>选了第 i - 1 和第 i - 2 个斐波那契数;

还有一个关键是:题目给出的这个数能表示成几个斐波那契数的和<=>该数可以被用斐波那契数分解。

如果把选不选每一个斐波那契数用二进制表示的话,首先要尽量使最高位最大,才能算出最多的方案。

把第一次分解的那些斐波那契数的位置记录下来,用dp表示这些数选不选。

  若选这个数,则上一个选了或者没选而分解到更小的都行;

  若不选这个数,则它的方案数画一画就知道是  它与上一个分解出的数中间的0的个数 * 选上一个数 + (……0的个数+1)*不选上一个数;

我觉得自己应该好好利用斐波那契数的这个写在第一行的性质。本题怎么可能不与这有关呢?

  自己考虑到“上一个数也可以不选而……”的时候就不行了,这是没有考虑到利用自己假设已经算出来的值(即“不选这个数的方案数”);还是经验不足吧。

蜜汁:注释掉的部分有什么不对?

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=1e6+;
ll n,c[N],cnt,dp[][],pos[N],xnt;
int main()
{
scanf("%lld",&n);
c[]=;c[]=;
for(int i=;c[i-]<=n;i++)c[i]=c[i-]+c[i-],cnt=i-;
for(int i=cnt;i&&n;i--)if(c[i]<=n)n-=c[i],pos[++xnt]=i;
// dp[xnt][1]=1;dp[xnt][0]=(pos[xnt]-1)/2;/////
// for(int i=xnt-1;i;i--)
// {
// dp[i][1]=dp[i+1][0]+dp[i+1][1];
// dp[i][0]=dp[i+1][0]*(pos[i]-pos[i+1])/2+dp[i+1][1]*(pos[i]-pos[i+1]-1)/2;
// }
// printf("%lld",dp[1][0]+dp[1][1]);
sort(pos+,pos+xnt+);
dp[][]=;dp[][]=(pos[]-)/;
for(int i=;i<=xnt;i++)
{
dp[i][]=dp[i-][]+dp[i-][];
dp[i][]=(pos[i]-pos[i-])/*dp[i-][]+(pos[i]-pos[i-]-)/*dp[i-][];
}
printf("%lld",dp[xnt][]+dp[xnt][]);
return ;
}

bzoj2660最多的方案的更多相关文章

  1. bzoj2660最多的方案——数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2660 首先,多种方案的出现是因为一个较大的斐波那契数可以变成两个较小的: 用一个01串来表示 ...

  2. bzoj2660: [Beijing wc2012]最多的方案

    题目链接 bzoj2660: [Beijing wc2012]最多的方案 题解 对于一个数的斐波那契数列分解,他的最少项分解是唯一的 我们在拆分成的相临两项之间分解后者,这样形成的方案是最优且不重的 ...

  3. [CF126D]Fibonacci Sums/[BJOI2012]最多的方案

    [CF126D]Fibonacci Sums/[BJOI2012]最多的方案 题目大意: 将\(n(n\le10^9)\)表示成若干个不同斐波那契数之和的形式,求方案数. 思路: 如果不考虑\(0\) ...

  4. BJOI2012 最多的方案

    BJOI2012 最多的方案 Description ​ 第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数 ...

  5. bzoj千题计划213:bzoj2660: [Beijing wc2012]最多的方案

    http://www.lydsy.com/JudgeOnline/problem.php?id=2660 很容易想到是先把n表示成最大的两个斐波那契数相加,然后再拆分这两个斐波那契数 把数表示成斐波那 ...

  6. [BJOI2012]最多的方案(记忆化搜索)

    第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的和的形式. ...

  7. bzoj 2660: [Beijing wc2012]最多的方案

                       Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 617  Solved: 361[Submit][Status][ ...

  8. [luogu4133 BJOI2012] 最多的方案 (计数dp)

    题目描述 第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的 ...

  9. BZOJ 2660 (BJOI 2012) 最多的方案

    Description 第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一 ...

随机推荐

  1. [one day one question] safari缓存太厉害

    问题描述: safari缓存太厉害,这怎么破? 解决方案: window.onpageshow = function(event) { if (event.persisted) { window.lo ...

  2. UVaLive4992:Jungle Outpost

    传送门 半平面交. 首先,由显然成立法可以证明炸连续的几个总比分散火力效果更佳. 所以二分答案,转化为判定问题,即间隔$ans$个点的连线的半平面交是否为空. 半平面交判定即可. 时间复杂度:$O(N ...

  3. 20145326 《Java程序设计》第5周学习总结

    20145326 <Java程序设计>第5周学习总结 教材学习内容总结 第八章 一.语法与继承结构 1.使用try .catch 我们编写程序时总有些由意想不到的状况而引发的错误,java ...

  4. Access规格

    属性 最大值 Microsoft Access 数据库 (.mdb) 文件大小 2G 字节减去系统对象所需的空间. 数据库中的对象个数 32,768 模块(包括“内含模块”属性为“是”的窗体和报表)  ...

  5. C# .NET 开发心得

    1. 工作路径问题 1. 多项目构成的解决方案,Web APP作为启动项目时的工作路径 //当前执行的exe文件名 //C:\\Program Files\\IIS Express\\iisexpre ...

  6. mis权限系统

    在mis中开发,主要目的是有一个统一的权限管理(即r360.right表),以及一个统一的系统和界面供后台配置管理 1.数据库准备工作: mis后台涉及表: right表是权限操作表,role_rig ...

  7. ERROR: cannot launch node of type [robot_pose_publisher/robot_pose_publisher]: robot_pose_publisher

    sudo apt-get install ros-indigo-robot-pose-publisher

  8. Facade(外观)

    意图: 为子系统中的一组接口提供一个一致的界面,Facade模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. 适用性: 当你要为一个复杂子系统提供一个简单接口时.子系统往往因为不断演化而变 ...

  9. Java网络编程学习A轮_08_NIO的Reactor模型

    参考资料: 了解 Java NIO 的 Reactor 模型,大神 Doug Lea 的 PPT Scalable IO in Java 必看:http://gee.cs.oswego.edu/dl/ ...

  10. ✅问题:Rails.ajax的data不支持{}hash格式。必须使用string。 dataType的格式。

    Rails.ajax({ url: url, type: "PATCH", data: {"post":{"category_id":thi ...