"""
该模块功能:获取用户的输入文本,通过输入文本和数据库中的关键主题文本相比较,
获取最佳的回答内容
"""
import xlrd
import jieba
import nltk # 读取excel表格内的数据
def read_excel(filepath):
# 定义一个字典,动态建立一个字典
map_dict = {}
data = xlrd.open_workbook(filepath)
table = data.sheets()[0]
# 获取表格行数和列数
nrows = table.nrows
ncols = table.ncols
# 获取表格第1列的内容,内容是一个list
s = table.col_values(1)[1:]
# 获取长度
length = len(s)
# 迭代每一个元素进行处理
for each in range(length):
each_string = s[each]
# 分离出title和对应的解释
word_key, word_value = each_string.split(':')
# 把数据放入一个字典中,以键值对的形式存在
map_dict[word_key] = word_value print(map_dict)
return map_dict
# 已经将数据放入到字典里,接下来是使用数据了
# 通过语音输入一个关键字,这个关键字对应字典的键,采用什么样的模型实现这两个的映射,找到对应的键值就可以找到需要的答案,这就是思路 # 假设已经获得了一个输入字符
# input_string = "货币型基金"
# 获取字典的键
# title_key = list(map_dict.keys())
# print(title_key) # 中间环节,实现input_string和title_key 的映射,相似度匹配 # 最后,根据键获取值
# content_value = map_dict.get(input_string)
# print(content_value) # 统计key中各个词频
def solve_word(word_key):
seg_list = [] for each in word_key:
temp_string = list(jieba.cut(each))
seg_list.extend(temp_string)
print(len(seg_list))
# 得到结果列表
seg_list = set(seg_list)
print(seg_list) # 计算两句话的相似程度模板
#   句子A:我喜欢看电视,不喜欢看电影。
#   句子B:我不喜欢看电视,也不喜欢看电影。
def calc_sentence_similarity(sentence_A, sentence_B):
# sentence_A = "我喜欢看电视,不喜欢看电影"
# sentence_B = "我不喜欢看电视,计算两句话的相似程度模板" # 第一步,分词
segment_A = list(jieba.cut(sentence_A))
segment_B = list(jieba.cut(sentence_B))
# print(segment_A)
# print(segment_B) # 第二步,列出所有的词
all_words = set(segment_A + segment_B)
# print(all_words) # 第三步,统计词频。放到字典里面,遍历all_words,看句子A和句子B都是各有多少
#   句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。
#   句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。
frequency_dict_A = {}
frequency_dict_B = {}
if all_words is not None:
for t in all_words:
frequency_dict_A[t] = segment_A.count(t)
frequency_dict_B[t] = segment_B.count(t)
# print(frequency_dict_A)
# print(frequency_dict_B) # 第四步,写出词频向量
word_frequency_vector_A = list(frequency_dict_A.values())
word_frequency_vector_B = list(frequency_dict_B.values())
# print(word_frequency_vector_A)
# print(word_frequency_vector_B) # 第五步,计算两个向量的相似度,夹角的余弦
return cos_vector(word_frequency_vector_A, word_frequency_vector_B) def cos_vector(x, y):
if(len(x) != len(y)):
print('输入错误,两个向量不在一个向量空间')
return
result1 = 0.0
result2 = 0.0
result3 = 0.0
for i in range(len(x)):
result1 += x[i]*y[i] #sum(X*Y)
result2 += x[i]**2 #sum(X*X)
result3 += y[i]**2 #sum(Y*Y)
# print("两个向量的夹角的余弦值:"+str(result1/((result2*result3)**0.5))) #结果显示
return result1/((result2*result3)**0.5) # 问句匹配,找出问题的结果
def find_result(input_string, word_dict):
# 获取用户的输入,将其和数据库中的每一个数据进行对比,计算相似度
# input_string = "票汇汇款"
temp_dict = {}
for temp_string in word_dict.keys():
# 计算相似度,key:要查找的字符串;value:相似度的值。max(d.items(),key=lambda x:x[1])[0]
temp_dict[temp_string] = calc_sentence_similarity(input_string, temp_string) max_value_key = max(temp_dict, key=temp_dict.get)
# 得到对应的文本
text_result = word_dict.get(max_value_key)
print(max_value_key)
print(text_result) # 调用主程序
def read_get_answer(file_path, input_string):
# 数据源, file_path = "./data/word_instruction.xls"
# 获取用户文本, input_string = "我想知道什么是止付卡"
# 读入数据,返回字典
word_dict = read_excel(file_path)
# 计算相似度
find_result(input_string, word_dict) if __name__ == '__main__':
# 数据源
file_path = "./data/word_instruction.xls"
# 获取用户文本
input_string = "我想知道什么是止付卡"
# 读入数据,返回字典
word_dict = read_excel(file_path)
# 计算相似度
find_result(input_string, word_dict)
"""
该模块功能:获取用户的输入文本,通过输入文本和数据库中的关键主题文本相比较,
获取最佳的回答内容
"""
import xlrd
import jieba
import nltk # 读取excel表格内的数据
def read_excel(filepath):
# 定义一个字典,动态建立一个字典
map_dict = {}
data = xlrd.open_workbook(filepath)
table = data.sheets()[]
# 获取表格行数和列数
nrows = table.nrows
ncols = table.ncols
# 获取表格第1列的内容,内容是一个list
s = table.col_values()[:]
# 获取长度
length = len(s)
# 迭代每一个元素进行处理
for each in range(length):
each_string = s[each]
# 分离出title和对应的解释
word_key, word_value = each_string.split(':')
# 把数据放入一个字典中,以键值对的形式存在
map_dict[word_key] = word_value print(map_dict)
return map_dict
# 已经将数据放入到字典里,接下来是使用数据了
# 通过语音输入一个关键字,这个关键字对应字典的键,采用什么样的模型实现这两个的映射,找到对应的键值就可以找到需要的答案,这就是思路 # 假设已经获得了一个输入字符
# input_string = "货币型基金"
# 获取字典的键
# title_key = list(map_dict.keys())
# print(title_key) # 中间环节,实现input_string和title_key 的映射,相似度匹配 # 最后,根据键获取值
# content_value = map_dict.get(input_string)
# print(content_value) # 统计key中各个词频
def solve_word(word_key):
seg_list = [] for each in word_key:
temp_string = list(jieba.cut(each))
seg_list.extend(temp_string)
print(len(seg_list))
# 得到结果列表
seg_list = set(seg_list)
print(seg_list) # 计算两句话的相似程度模板
#   句子A:我喜欢看电视,不喜欢看电影。
#   句子B:我不喜欢看电视,也不喜欢看电影。
def calc_sentence_similarity(sentence_A, sentence_B):
# sentence_A = "我喜欢看电视,不喜欢看电影"
# sentence_B = "我不喜欢看电视,计算两句话的相似程度模板" # 第一步,分词
segment_A = list(jieba.cut(sentence_A))
segment_B = list(jieba.cut(sentence_B))
# print(segment_A)
# print(segment_B) # 第二步,列出所有的词
all_words = set(segment_A + segment_B)
# print(all_words) # 第三步,统计词频。放到字典里面,遍历all_words,看句子A和句子B都是各有多少
#   句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。
#   句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。
frequency_dict_A = {}
frequency_dict_B = {}
if all_words is not None:
for t in all_words:
frequency_dict_A[t] = segment_A.count(t)
frequency_dict_B[t] = segment_B.count(t)
# print(frequency_dict_A)
# print(frequency_dict_B) # 第四步,写出词频向量
word_frequency_vector_A = list(frequency_dict_A.values())
word_frequency_vector_B = list(frequency_dict_B.values())
# print(word_frequency_vector_A)
# print(word_frequency_vector_B) # 第五步,计算两个向量的相似度,夹角的余弦
return cos_vector(word_frequency_vector_A, word_frequency_vector_B) def cos_vector(x, y):
if(len(x) != len(y)):
print('输入错误,两个向量不在一个向量空间')
return
result1 = 0.0
result2 = 0.0
result3 = 0.0
for i in range(len(x)):
result1 += x[i]*y[i] #sum(X*Y)
result2 += x[i]**2 #sum(X*X)
result3 += y[i]**2 #sum(Y*Y)
# print("两个向量的夹角的余弦值:"+str(result1/((result2*result3)**0.5))) #结果显示
return result1/((result2*result3)**0.5) # 问句匹配,找出问题的结果
def find_result(input_string, word_dict):
# 获取用户的输入,将其和数据库中的每一个数据进行对比,计算相似度
# input_string = "票汇汇款"
temp_dict = {}
for temp_string in word_dict.keys():
# 计算相似度,key:要查找的字符串;value:相似度的值。max(d.items(),key=lambda x:x[1])[0]
temp_dict[temp_string] = calc_sentence_similarity(input_string, temp_string) max_value_key = max(temp_dict, key=temp_dict.get)
# 得到对应的文本
text_result = word_dict.get(max_value_key)
print(max_value_key)
print(text_result) # 调用主程序
def read_get_answer(file_path, input_string):
# 数据源, file_path = "./data/word_instruction.xls"
# 获取用户文本, input_string = "我想知道什么是止付卡"
# 读入数据,返回字典
word_dict = read_excel(file_path)
# 计算相似度
find_result(input_string, word_dict) if __name__ == '__main__':
# 数据源
file_path = "./data/word_instruction.xls"
# 获取用户文本
input_string = "我想知道什么是止付卡"
# 读入数据,返回字典
word_dict = read_excel(file_path)
# 计算相似度
find_result(input_string, word_dict)

python问答模块的更多相关文章

  1. Python MySQLdb模块连接操作mysql数据库实例_python

    mysql是一个优秀的开源数据库,它现在的应用非常的广泛,因此很有必要简单的介绍一下用python操作mysql数据库的方法.python操作数据库需要安装一个第三方的模块,在http://mysql ...

  2. Python标准模块--threading

    1 模块简介 threading模块在Python1.5.2中首次引入,是低级thread模块的一个增强版.threading模块让线程使用起来更加容易,允许程序同一时间运行多个操作. 不过请注意,P ...

  3. Python的模块引用和查找路径

    模块间相互独立相互引用是任何一种编程语言的基础能力.对于“模块”这个词在各种编程语言中或许是不同的,但我们可以简单认为一个程序文件是一个模块,文件里包含了类或者方法的定义.对于编译型的语言,比如C#中 ...

  4. Python Logging模块的简单使用

    前言 日志是非常重要的,最近有接触到这个,所以系统的看一下Python这个模块的用法.本文即为Logging模块的用法简介,主要参考文章为Python官方文档,链接见参考列表. 另外,Python的H ...

  5. Python标准模块--logging

    1 logging模块简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设置不同 ...

  6. python基础-模块

    一.模块介绍                                                                                              ...

  7. python 安装模块

    python安装模块的方法很多,在此仅介绍一种,不需要安装其他附带的pip等,python安装完之后,配置环境变量,我由于中英文分号原因,环境变量始终没能配置成功汗. 1:下载模块的压缩文件解压到任意 ...

  8. python Queue模块

    先看一个很简单的例子 #coding:utf8 import Queue #queue是队列的意思 q=Queue.Queue(maxsize=10) #创建一个queue对象 for i in ra ...

  9. python logging模块可能会令人困惑的地方

    python logging模块主要是python提供的通用日志系统,使用的方法其实挺简单的,这块就不多介绍.下面主要会讲到在使用python logging模块的时候,涉及到多个python文件的调 ...

随机推荐

  1. 用C语言显示汉字的演示程序

    汉字是方块字,宽高相等的汉字库在嵌入式领域有着广泛的应用,且其解析也相对来说是比较简单的.汉字在汉字库中的索引一般会遵循GB2312/GBK编码规则,GB2312/GBK规定汉字编码由2个字节组成,其 ...

  2. C# 将RichTextBox中内容的文档以二进制形式存

    private void button1_Click(object sender, EventArgs e)        { System.IO.MemoryStream mstream = new ...

  3. 学习:List的扁平化 和 拼接

    一.list_to_binary/1的参数:iolist类型的. 二.lists:concat(Things) -> string() Types: Things = [Thing] Thing ...

  4. 统计 fastq 文件 q20 , GC 含量的软件

    二代测序的分析过程中,经常需要统计原始下机数据的数据量,看数据量是否符合要求:另外还需要统计q20,q30,GC含量等反应测序质量的指标: 在kseq.h 的基础上稍加改造,就可以实现从fastq 文 ...

  5. js身份证验证类

    var IDCard = function () { //---------------------------------------------------------- // 功能:根据身份证号 ...

  6. Mysql利用match...against进行全文检索

    在电商项目中,最核心的功能之一就是搜索功能,搜索做的好,整个电商平台就是个优秀的平台.一般搜索功能都使用搜索引擎如Lucene.solr.elasticsearch等,虽然这功能比较强大,但是对于一些 ...

  7. Faster-RCNN

  8. ios 显示代码块(show the code snippet library)

    在项目的实际开发中,我们会重复的书写很多的代码,我经常是需要用到某一个功能,就从以前的项目中复制粘贴过来,很是麻烦 下面就为大家提供两种不错的方法, 一.宏定义,这个大家应该很熟悉,在这里就不做多的介 ...

  9. laravel 模版引擎使用

    laravel 模版引擎以 @标签 开头,以 @end标签 结尾,常用有 foreach foreachelse if for while等 1)foreach 和 foreachelse 差不到,区 ...

  10. 服务器允许js跨域

    header('Access-Control-Allow-Origin:*'); header('Access-Control-Allow-Methods:POST,GET'); header('Ac ...