python问答模块
"""
该模块功能:获取用户的输入文本,通过输入文本和数据库中的关键主题文本相比较,
获取最佳的回答内容
"""
import xlrd
import jieba
import nltk # 读取excel表格内的数据
def read_excel(filepath):
# 定义一个字典,动态建立一个字典
map_dict = {}
data = xlrd.open_workbook(filepath)
table = data.sheets()[0]
# 获取表格行数和列数
nrows = table.nrows
ncols = table.ncols
# 获取表格第1列的内容,内容是一个list
s = table.col_values(1)[1:]
# 获取长度
length = len(s)
# 迭代每一个元素进行处理
for each in range(length):
each_string = s[each]
# 分离出title和对应的解释
word_key, word_value = each_string.split(':')
# 把数据放入一个字典中,以键值对的形式存在
map_dict[word_key] = word_value print(map_dict)
return map_dict
# 已经将数据放入到字典里,接下来是使用数据了
# 通过语音输入一个关键字,这个关键字对应字典的键,采用什么样的模型实现这两个的映射,找到对应的键值就可以找到需要的答案,这就是思路 # 假设已经获得了一个输入字符
# input_string = "货币型基金"
# 获取字典的键
# title_key = list(map_dict.keys())
# print(title_key) # 中间环节,实现input_string和title_key 的映射,相似度匹配 # 最后,根据键获取值
# content_value = map_dict.get(input_string)
# print(content_value) # 统计key中各个词频
def solve_word(word_key):
seg_list = [] for each in word_key:
temp_string = list(jieba.cut(each))
seg_list.extend(temp_string)
print(len(seg_list))
# 得到结果列表
seg_list = set(seg_list)
print(seg_list) # 计算两句话的相似程度模板
# 句子A:我喜欢看电视,不喜欢看电影。
# 句子B:我不喜欢看电视,也不喜欢看电影。
def calc_sentence_similarity(sentence_A, sentence_B):
# sentence_A = "我喜欢看电视,不喜欢看电影"
# sentence_B = "我不喜欢看电视,计算两句话的相似程度模板" # 第一步,分词
segment_A = list(jieba.cut(sentence_A))
segment_B = list(jieba.cut(sentence_B))
# print(segment_A)
# print(segment_B) # 第二步,列出所有的词
all_words = set(segment_A + segment_B)
# print(all_words) # 第三步,统计词频。放到字典里面,遍历all_words,看句子A和句子B都是各有多少
# 句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。
# 句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。
frequency_dict_A = {}
frequency_dict_B = {}
if all_words is not None:
for t in all_words:
frequency_dict_A[t] = segment_A.count(t)
frequency_dict_B[t] = segment_B.count(t)
# print(frequency_dict_A)
# print(frequency_dict_B) # 第四步,写出词频向量
word_frequency_vector_A = list(frequency_dict_A.values())
word_frequency_vector_B = list(frequency_dict_B.values())
# print(word_frequency_vector_A)
# print(word_frequency_vector_B) # 第五步,计算两个向量的相似度,夹角的余弦
return cos_vector(word_frequency_vector_A, word_frequency_vector_B) def cos_vector(x, y):
if(len(x) != len(y)):
print('输入错误,两个向量不在一个向量空间')
return
result1 = 0.0
result2 = 0.0
result3 = 0.0
for i in range(len(x)):
result1 += x[i]*y[i] #sum(X*Y)
result2 += x[i]**2 #sum(X*X)
result3 += y[i]**2 #sum(Y*Y)
# print("两个向量的夹角的余弦值:"+str(result1/((result2*result3)**0.5))) #结果显示
return result1/((result2*result3)**0.5) # 问句匹配,找出问题的结果
def find_result(input_string, word_dict):
# 获取用户的输入,将其和数据库中的每一个数据进行对比,计算相似度
# input_string = "票汇汇款"
temp_dict = {}
for temp_string in word_dict.keys():
# 计算相似度,key:要查找的字符串;value:相似度的值。max(d.items(),key=lambda x:x[1])[0]
temp_dict[temp_string] = calc_sentence_similarity(input_string, temp_string) max_value_key = max(temp_dict, key=temp_dict.get)
# 得到对应的文本
text_result = word_dict.get(max_value_key)
print(max_value_key)
print(text_result) # 调用主程序
def read_get_answer(file_path, input_string):
# 数据源, file_path = "./data/word_instruction.xls"
# 获取用户文本, input_string = "我想知道什么是止付卡"
# 读入数据,返回字典
word_dict = read_excel(file_path)
# 计算相似度
find_result(input_string, word_dict) if __name__ == '__main__':
# 数据源
file_path = "./data/word_instruction.xls"
# 获取用户文本
input_string = "我想知道什么是止付卡"
# 读入数据,返回字典
word_dict = read_excel(file_path)
# 计算相似度
find_result(input_string, word_dict)
"""
该模块功能:获取用户的输入文本,通过输入文本和数据库中的关键主题文本相比较,
获取最佳的回答内容
"""
import xlrd
import jieba
import nltk # 读取excel表格内的数据
def read_excel(filepath):
# 定义一个字典,动态建立一个字典
map_dict = {}
data = xlrd.open_workbook(filepath)
table = data.sheets()[]
# 获取表格行数和列数
nrows = table.nrows
ncols = table.ncols
# 获取表格第1列的内容,内容是一个list
s = table.col_values()[:]
# 获取长度
length = len(s)
# 迭代每一个元素进行处理
for each in range(length):
each_string = s[each]
# 分离出title和对应的解释
word_key, word_value = each_string.split(':')
# 把数据放入一个字典中,以键值对的形式存在
map_dict[word_key] = word_value print(map_dict)
return map_dict
# 已经将数据放入到字典里,接下来是使用数据了
# 通过语音输入一个关键字,这个关键字对应字典的键,采用什么样的模型实现这两个的映射,找到对应的键值就可以找到需要的答案,这就是思路 # 假设已经获得了一个输入字符
# input_string = "货币型基金"
# 获取字典的键
# title_key = list(map_dict.keys())
# print(title_key) # 中间环节,实现input_string和title_key 的映射,相似度匹配 # 最后,根据键获取值
# content_value = map_dict.get(input_string)
# print(content_value) # 统计key中各个词频
def solve_word(word_key):
seg_list = [] for each in word_key:
temp_string = list(jieba.cut(each))
seg_list.extend(temp_string)
print(len(seg_list))
# 得到结果列表
seg_list = set(seg_list)
print(seg_list) # 计算两句话的相似程度模板
# 句子A:我喜欢看电视,不喜欢看电影。
# 句子B:我不喜欢看电视,也不喜欢看电影。
def calc_sentence_similarity(sentence_A, sentence_B):
# sentence_A = "我喜欢看电视,不喜欢看电影"
# sentence_B = "我不喜欢看电视,计算两句话的相似程度模板" # 第一步,分词
segment_A = list(jieba.cut(sentence_A))
segment_B = list(jieba.cut(sentence_B))
# print(segment_A)
# print(segment_B) # 第二步,列出所有的词
all_words = set(segment_A + segment_B)
# print(all_words) # 第三步,统计词频。放到字典里面,遍历all_words,看句子A和句子B都是各有多少
# 句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。
# 句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。
frequency_dict_A = {}
frequency_dict_B = {}
if all_words is not None:
for t in all_words:
frequency_dict_A[t] = segment_A.count(t)
frequency_dict_B[t] = segment_B.count(t)
# print(frequency_dict_A)
# print(frequency_dict_B) # 第四步,写出词频向量
word_frequency_vector_A = list(frequency_dict_A.values())
word_frequency_vector_B = list(frequency_dict_B.values())
# print(word_frequency_vector_A)
# print(word_frequency_vector_B) # 第五步,计算两个向量的相似度,夹角的余弦
return cos_vector(word_frequency_vector_A, word_frequency_vector_B) def cos_vector(x, y):
if(len(x) != len(y)):
print('输入错误,两个向量不在一个向量空间')
return
result1 = 0.0
result2 = 0.0
result3 = 0.0
for i in range(len(x)):
result1 += x[i]*y[i] #sum(X*Y)
result2 += x[i]**2 #sum(X*X)
result3 += y[i]**2 #sum(Y*Y)
# print("两个向量的夹角的余弦值:"+str(result1/((result2*result3)**0.5))) #结果显示
return result1/((result2*result3)**0.5) # 问句匹配,找出问题的结果
def find_result(input_string, word_dict):
# 获取用户的输入,将其和数据库中的每一个数据进行对比,计算相似度
# input_string = "票汇汇款"
temp_dict = {}
for temp_string in word_dict.keys():
# 计算相似度,key:要查找的字符串;value:相似度的值。max(d.items(),key=lambda x:x[1])[0]
temp_dict[temp_string] = calc_sentence_similarity(input_string, temp_string) max_value_key = max(temp_dict, key=temp_dict.get)
# 得到对应的文本
text_result = word_dict.get(max_value_key)
print(max_value_key)
print(text_result) # 调用主程序
def read_get_answer(file_path, input_string):
# 数据源, file_path = "./data/word_instruction.xls"
# 获取用户文本, input_string = "我想知道什么是止付卡"
# 读入数据,返回字典
word_dict = read_excel(file_path)
# 计算相似度
find_result(input_string, word_dict) if __name__ == '__main__':
# 数据源
file_path = "./data/word_instruction.xls"
# 获取用户文本
input_string = "我想知道什么是止付卡"
# 读入数据,返回字典
word_dict = read_excel(file_path)
# 计算相似度
find_result(input_string, word_dict)
python问答模块的更多相关文章
- Python MySQLdb模块连接操作mysql数据库实例_python
mysql是一个优秀的开源数据库,它现在的应用非常的广泛,因此很有必要简单的介绍一下用python操作mysql数据库的方法.python操作数据库需要安装一个第三方的模块,在http://mysql ...
- Python标准模块--threading
1 模块简介 threading模块在Python1.5.2中首次引入,是低级thread模块的一个增强版.threading模块让线程使用起来更加容易,允许程序同一时间运行多个操作. 不过请注意,P ...
- Python的模块引用和查找路径
模块间相互独立相互引用是任何一种编程语言的基础能力.对于“模块”这个词在各种编程语言中或许是不同的,但我们可以简单认为一个程序文件是一个模块,文件里包含了类或者方法的定义.对于编译型的语言,比如C#中 ...
- Python Logging模块的简单使用
前言 日志是非常重要的,最近有接触到这个,所以系统的看一下Python这个模块的用法.本文即为Logging模块的用法简介,主要参考文章为Python官方文档,链接见参考列表. 另外,Python的H ...
- Python标准模块--logging
1 logging模块简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设置不同 ...
- python基础-模块
一.模块介绍 ...
- python 安装模块
python安装模块的方法很多,在此仅介绍一种,不需要安装其他附带的pip等,python安装完之后,配置环境变量,我由于中英文分号原因,环境变量始终没能配置成功汗. 1:下载模块的压缩文件解压到任意 ...
- python Queue模块
先看一个很简单的例子 #coding:utf8 import Queue #queue是队列的意思 q=Queue.Queue(maxsize=10) #创建一个queue对象 for i in ra ...
- python logging模块可能会令人困惑的地方
python logging模块主要是python提供的通用日志系统,使用的方法其实挺简单的,这块就不多介绍.下面主要会讲到在使用python logging模块的时候,涉及到多个python文件的调 ...
随机推荐
- mui自定义事件带参返回mui.back()
父页面添加自定义监听事件:(e.detail.xxx) window.addEventListener('doit', function(e){ //获取参数值 var imagePath = e.d ...
- Git 基础 - 查看提交历史
查看提交历史 在提交了若干更新之后,又或者克隆了某个项目,想回顾下提交历史,可以使用 git log 命令查看. 接下来的例子会用我专门用于演示的 simplegit 项目,运行下面的命令获取该项目源 ...
- ubuntu12.04 修改登陆用户 为root
Ubuntu 12.04默认是不允许root登录的,在登录窗口只能看到普通用户和访客登录.以普通身份登陆Ubuntu后我们需要做一些修改,普通用户登录后,修改系统配置文件需要切换到超级用户模式,在终端 ...
- 使用CXF为webservice添加拦截器
拦截器分为Service端和Client端 拦截器是在发送soap消息包的某一个时机拦截soap消息包,对soap消息包的数据进行分析或处理.分为CXF自带的拦截器和自定义的拦截器 1.Servi ...
- Python 爬虫知识点 - 淘宝商品检索结果抓包分析(续二)
一.URL分析 通过对“Python机器学习”结果抓包分析,有两个无规律的参数:_ksTS和callback.通过构建如下URL可以获得目标关键词的检索结果,如下所示: https://s.taoba ...
- oracle 与mysql 的当前时间比较
select p.id,p.order_Num,p.image_url,p.url,p.image_topic, p.is_download, p.big_image_url, p.begin_tim ...
- 使用Editplus和Dev C++配置C++的编译运行环 境
或许大家会有疑问,为何不直接使用VC;VS;或Dev这些IDE呢?何必舍近求远.主要是因为写程序这么多年来已经习惯了Editplus,包括他的快捷键,语法自动完成,语法提示等等,Editplus用了这 ...
- DAG 的最短路径算法
求图中节点的单源最短路径可以使用Dijkstra,BellmanFord, SPFA算法,而对于有向无环图DAG来说,可以通过简单的动态规划来进行求解. DAG的独特之处是所有节点可以线性化( ...
- LeetCode——Contains Duplicate II
Description: Given an array of integers and an integer k, find out whether there there are two disti ...
- 为元素绑定监听键盘上的enter键被按下事件的方法
$("someElement").on("keydown", function(event){ var key = event.which; if(key == ...