Problem

The 20 commonly occurring amino acids are abbreviated by using 20 letters from the English alphabet (all letters except for B, J, O, U, X, and Z). Protein strings are constructed from these 20 symbols. Henceforth, the term genetic string will incorporate protein strings along with DNA strings and RNA strings.

The RNA codon table dictates the details regarding the encoding of specific codons into the amino acid alphabet.

Given: An RNA string ss corresponding to a strand of mRNA (of length at most 10 kbp).

Return: The protein string encoded by ss.

Sample Dataset

AUGGCCAUGGCGCCCAGAACUGAGAUCAAUAGUACCCGUAUUAACGGGUGA

Sample Output

MAMAPRTEINSTRING

方法一:
# -*- coding: utf-8 -*-
### 8. Translating RNA into Protein ###
import re
from collections import OrderedDict codonTable = OrderedDict()
with open('rna_codon_table.txt') as f:
for line in f:
line = line.rstrip()
lst = re.split('\s+', line) #\s+ 匹配空格1次或无限次
for i in [0, 2, 4, 6]:
codonTable[lst[i]] = lst[i + 1] rnaSeq = ''
with open('rosalind_prot.txt', 'rt') as f:
for line in f:
line = line.rstrip()
rnaSeq += line.upper() aminoAcids = []
i = 0
while i < len(rnaSeq):
codon = rnaSeq[i:i + 3]
if codonTable[codon] != 'Stop':
aminoAcids.append(codonTable[codon])
i += 3 peptide = ''.join(aminoAcids) print (peptide)
方法二:
def translate_rna(sequence):
codonTable = {
'AUA':'I', 'AUC':'I', 'AUU':'I', 'AUG':'M',
'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACU':'T',
'AAC':'N', 'AAU':'N', 'AAA':'K', 'AAG':'K',
'AGC':'S', 'AGU':'S', 'AGA':'R', 'AGG':'R',
'CUA':'L', 'CUC':'L', 'CUG':'L', 'CUU':'L',
'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCU':'P',
'CAC':'H', 'CAU':'H', 'CAA':'Q', 'CAG':'Q',
'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGU':'R',
'GUA':'V', 'GUC':'V', 'GUG':'V', 'GUU':'V',
'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCU':'A',
'GAC':'D', 'GAU':'D', 'GAA':'E', 'GAG':'E',
'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGU':'G',
'UCA':'S', 'UCC':'S', 'UCG':'S', 'UCU':'S',
'UUC':'F', 'UUU':'F', 'UUA':'L', 'UUG':'L',
'UAC':'Y', 'UAU':'Y', 'UAA':'', 'UAG':'',
'UGC':'C', 'UGU':'C', 'UGA':'', 'UGG':'W',
}
proteinsequence = ''
for n in range(0,len(sequence),3):
if sequence[n:n+3] in codonTable.keys():
proteinsequence += codonTable[sequence[n:n+3]]
return proteinsequence se = open('rosalind_prot.txt').read().strip('\n') #sequence

方法三:

from Bio.Seq import Seq
from Bio.Alphabet import generic_dna, generic_rna # translation
messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG", generic_rna)
messenger_rna.translate() # reverse complement
my_dna = Seq("AGTACACTGGT", generic_dna)
my_dna.reverse_complement()

  

08 Translating RNA into Protein的更多相关文章

  1. The top 100 papers Nature explores the most-cited research of all time.

    The top 100 papers Nature explores the most-cited research of all time. The discovery of high-temper ...

  2. 【bioinfo】生物信息学——代码遇见生物学的地方

    注:从进入生信领域到现在,已经过去快8年了.生物信息学包含了我最喜欢的三门学科:生物学.计算机科学和数学.但是如果突然问起,什么是生物信息学,我还是无法给出一个让自己满意的答案.于是便有了这篇博客. ...

  3. Robustness|Variability|Diversification|Complexity|自组装|

    生命组学 进化方向有以下四个特性:Robustness:变稳定,比如杀虫剂最大浓度也有杀不死的虫子.Variability易变性与Diversification多样性,容易变多和变多.Complexi ...

  4. SAGE|DNA微阵列|RNA-seq|lncRNA|scripture|tophat|cufflinks|NONCODE|MA|LOWESS|qualitile归一化|permutation test|SAM|FDR|The Bonferroni|Tukey's|BH|FWER|Holm's step-down|q-value|

    生物信息学-基因表达分析 为了丰富中心法则,研究人员使用不断更新的技术研究lncRNA的方方面面,其中技术主要是生物学上的微阵列芯片技术和表达数据分析方法,方方面面是指lncRNA的位置特征. Bac ...

  5. 2. Transcribing DNA into RNA

    Problem An RNA string is a string formed from the alphabet containing 'A', 'C', 'G', and 'U'. Given ...

  6. (转)protein 数据库

    最早关注蛋白质互作网络,是在来GDMC第一年的时候,中间停了半年看互作-各种算法,网络分析停滞不前,没想到搞到最后,还是和网络碰到了一起,我总是会潜意识走近给自己第一印象不错的object,包括人.用 ...

  7. RNA velocity | RNA速率

    单细胞转录组确实是利器,但我们大多只利用了表达的信息,而从reads到表达之间的信息完全被我们忽略了. 最近nature发了一篇单细胞方法类文章,讲得就是如何利用RNA velocity来做细胞发育路 ...

  8. RNA剪接体 Spliceosome | 冷冻电镜 | 结构生物学

    冷冻电镜 为什么冷冻电镜 (Cryo-EM) 技术的发明可以获得2017诺贝尔化学奖?知乎看法 Press release: The Nobel Prize in Chemistry 2017 We ...

  9. Deep Protein Methylation Profiling by Combined Chemical and Immunoaffinity Approaches Reveals Novel PRMT1 Targets (结合层析法和免疫沉淀法的蛋白甲基化的深度检测技术发现了PRMT1新的靶标蛋白)

    题目:Deep Protein Methylation Profiling by Combined Chemical and Immunoaffinity Approaches Reveals Nov ...

随机推荐

  1. 2019第十届蓝桥杯C/C++

    这是我第一次参加蓝桥杯比赛,比完后,有点低于预期,自己的发挥低于预期,赛事水准也低于预期. 教室里面很多同学的电脑出现问题,举办学校也没有完善的应急方案,有一部分同学11点钟才可以做题. 附题目pdf ...

  2. 模仿VIMD的模式的简化代码示例

    按numpad0来切换模式,按t显示不同的结果: Numpad0:: tfmode:=!tfmode aaa:=(tfmode=?"AAAA":"BBBB") ...

  3. mysql5.7.12/13在安装新实例时报错:InnoDB: auto-extending data file ./ibdata1 is of a different size 640 pages (rounded down to MB) than specified in the .cnf file: initial 768 pages, max 0 (relevant if non-zero

    .bin/mysqld --initialize-insecure --basedir=xxx --datadir=xxx 然后 .bin/mysqld_safe --defaults-file=xx ...

  4. C++11奇怪的语法

    1. istream_iterator 简而言之,istream_iterator像操作容器一样操作istream.例如下面代码,从std::cin构造std::istream_iteream< ...

  5. icape3 的使用

    在FPGA中,有时需要使用用户代码重配置FPGA,配置的内容可以是flash或者是其他的来源这样FPGA的启动模式有关,在本实验中配置文件是存放在flash中.实际的操作步骤如下: 1:生成一个工程, ...

  6. django-form.errors和前端上传文件

    一.上传文件: 在相应的模型里面定义`FileField`或者是`ImageField`类型的字段,并且1.设置好`upload_to`参数来指定上传的路径. class User(models.Mo ...

  7. 深入了解 JPA

    转载自:http://www.cnblogs.com/crawl/p/7703679.html 前言:谈起操作数据库,大致可以分为几个阶段:首先是 JDBC 阶段,初学 JDBC 可能会使用原生的 J ...

  8. MS SQL 2000 分配权限

    /** 分配权限 **/ use [master]create login [ln-tf\liaobin] from windows;gogrant control server to [ln-tf\ ...

  9. 跟我学算法-tensorflow 实现卷积神经网络

    我们采用的卷积神经网络是两层卷积层,两层池化层和两层全连接层 我们使用的数据是mnist数据,数据训练集的数据是50000*28*28*1 因为是黑白照片,所以通道数是1 第一次卷积采用64个filt ...

  10. 迷你MVVM框架 avalonjs 0.91发布

    本版本修了一些BUG与不合理的地方,感谢感谢ztz, 民工精髓, 姚立, qiangtou等人指正. 处理AMD加载 旧式IE下移除script节点内存泄漏的问题 fix firefox 全系列vis ...