【bzoj4591】超能粒子炮·改
Solution
首先这个模数是一个质数
然后看一下那个\(k\)和\(n\)的范围。。行吧Lucas定理咯
但是如果直接求:
\]
那。。稳稳的T啊。。。所以要化一下式子,我们令\(k=ap+b\):
\sum\limits_{i=0}^{k}\binom n i&\equiv \sum\limits_{i=0}^k \binom {i/p} {n/p}\binom {i\% p}{n\%p}(mod\ p)\\
&\equiv \sum\limits_{i=0}^{ap-1}\binom {i/p} {n/p}\binom {i\% p}{n\%p}+\sum\limits_{i=ap}^{ap+b}\binom {i/p} {n/p}\binom {i\% p}{n\%p}(mod\ p)\\
&\equiv \sum\limits_{i=0}^{a-1}\binom {i} {n/p}\sum\limits_{i=0}^{p-1}\binom {i}{n\%p}+\binom a {n/p}\sum\limits_{i=0}^b\binom {i}{n\%p}
\end{aligned}
\]
然后因为\(p\)比较小(只有\(2333\)真是2333)
所以我们可以直接暴力处理出\(n,m<=2333\)的\(\binom n m\)的的前缀和
然后对于范围内的直接调用,范围外的用上面那个式子递归处理就好了
代码大概长这个样子:
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int MOD=2333;
ll c[MOD+10][MOD+10],sum[MOD+10][MOD+10];
ll n,k,T,ans;
void prework(int n);
ll Lucas(ll n,ll m);
ll Min(ll x,ll y){return x<y?x:y;}
ll f(ll n,ll k);
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
ll a,b;
scanf("%lld",&T);
prework(MOD);
for (int o=1;o<=T;++o){
scanf("%lld%lld",&n,&k);
printf("%lld\n",f(n,k));
}
}
void prework(int n){
c[0][0]=1;
for (int i=1;i<=n;++i){
c[i][0]=1; c[i][i]=1;
for (int j=1;j<i;++j)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%MOD;
}
for (int i=0;i<=n;++i){
sum[i][0]=c[i][0];
for (int j=1;j<=n;++j)
sum[i][j]=(sum[i][j-1]+c[i][j])%MOD;
}
}
ll Lucas(ll n,ll m){
if (n<m) return 0;
if (n<MOD&&m<MOD) return c[n][m];
return c[n%MOD][m%MOD]*Lucas(n/MOD,m/MOD)%MOD;
}
ll f(ll n,ll k){
if (k<0) return 0;
if (n<MOD&&k<MOD) return sum[n][k];
return (f(n/MOD,min(k/MOD-1,n/MOD))*sum[n%MOD][MOD-1]%MOD+Lucas(n/MOD,k/MOD)*sum[n%MOD][k%MOD]%MOD)%MOD;
}
【bzoj4591】超能粒子炮·改的更多相关文章
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
- 【BZOJ4591】超能粒子炮·改(Lucas定理,组合计数)
题意: 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
- bzoj4591 / P4345 [SHOI2015]超能粒子炮·改
P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...
- 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理
题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- bzoj4591 [Shoi2015]超能粒子炮·改
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
- 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告
P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...
随机推荐
- Selenium2+python自动化-xpath定位语法
前言 在上一篇简单的介绍了用工具查看目标元素的xpath地址,工具查看比较死板,不够灵活,有时候直接复制粘贴会定位不到.这个时候就需要自己手动的去写xpath了,这一篇详细讲解xpath的一些语 ...
- Appium+python HTML测试报告(2)——一份报告模板(转)
(原文:https://www.cnblogs.com/fancy0158/p/10055003.html) 适用于python3: 下载地址: 英文:https://pan.baidu.com/s/ ...
- Unity面试问题归总
Unity面试问题归总 C#中Struct和Class的区别 Struct是Class的一种 A*寻路 https://blog.csdn.net/windcao/article/details/15 ...
- PHP原生代码写的微信扫码支付实例
一款PHP原生代码写的微信扫码支付,不基于任何框架,完全手写. 扫码支付只要授权域名对就OK,本地是无法测试.跟openid也没有关系,所以跟支付授权目录页没关系. 微信商户信息配置地址:weixin ...
- 基础的Servlet
1.认识Servlet 今天接触了Servlet,我就写了这篇Servlet的文章.首先,我们了解一下Servlet是什么: 这是百度百科的解释,我个人理解是可以用来前后端交互的一个东西,例如可以实现 ...
- 技本功丨用短平快的方式告诉你:Flink-SQL的扩展实现
2019年1月28日,阿里云宣布开源“计算王牌”实时计算平台Blink回馈给ApacheFlink社区.官方称,计算延迟已经降到毫秒级,也就是你在浏览网页的时候,眨了一下眼睛,淘宝.天猫处理的信息已经 ...
- Hibernate入门篇<1>hibernate.cfg.xml学习小结
Hibernate配置文件主要用于配置数据库连接和Hibernate运行时所需的各种属性,这个配置文件应该位于应用程序或Web程序的类文件夹 classes中.Hibernate配置文件支持两种形式, ...
- sprint1_11.15燃尽图(第二天)
找相关的图片资料用于做点餐系统的界面 燃尽图:
- Thunder--Beta发布--美工+文案
作业:https://edu.cnblogs.com/campus/nenu/SWE2017FALL/homework/1366 内容: 美工:原有功能展示.新增功能展示 程序图标 欢迎页面 我的书架 ...
- 《linux内核分析》 第一周
20135130 王川东 计算机是如何工作的? 计算机的基本原理是存储程序和程序控制.预先要把指挥计算机如何进行操作的指令序列(称为程序)和原始数据通过输入设备输送到计算机内存贮器中.每一条指令中明 ...