hadoop中map和reduce的数量设置
hadoop中map和reduce的数量设置,有以下几种方式来设置
一、mapred-default.xml
这个文件包含主要的你的站点定制的Hadoop。尽管文件名以mapred开头,通过它可以控制用户maps和 reduces的默认的设置。
下面是一些有用变量:
名字 | 含义 |
dfs.block.size |
分布式文件系统中每个数据块的大小 (bytes)
|
io.sort.factor | 合并排序时每层输入的文件数 |
io.sort.mb | 排序输入的reduce时缓存大小 |
io.file.buffer.size
|
用于缓存输入输出文件的字节数 |
mapred.reduce.parallel.copies
|
从map到reduce输出的线程数 |
dfs.replication | 每个DFS块的备份数 |
mapred.child.java.opts
|
传给子任务jvm的选项 |
mapred.min.split.size
|
在一个map输入分裂的最小字节数 |
mapred.output.compress
|
Reduce的输出是否被压缩 |
二、不再使用模式设置,通过代码控制:
Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定。在默认情况下,最终input占据了多少block,就应该启动多少个Mapper。如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃。这些逻辑确实是正确的,但都是在默认情况下的逻辑。其实如果进行一些客户化的设置,就可以控制了。
在Hadoop中,设置Map task的数量不像设置Reduce task数量那样直接,即:不能够通过API直接精确的告诉Hadoop应该启动多少个Map task。
你也许奇怪了,在API中不是提供了接口org.apache.hadoop.mapred.JobConf.setNumMapTasks(int
n)吗?这个值难道不可以设置Map task的数量吗?这个API的确没错,在文档上解释”Note: This is only a hint to
the
framework.“,即这个值对Hadoop的框架来说仅仅是个提示,不起决定性的作用。也就是说,即便你设置了,也不一定得到你想要的效果。
1. InputFormat介绍
在具体设置Map task数量之前,非常有必要了解一下与Map-Reduce输入相关的基础知识。
这个接口(org.apache.hadoop.mapred.InputFormat)描述了Map-Reduce
job的输入规格说明(input-specification),它将所有的输入文件分割成逻辑上的InputSplit,每一个InputSplit将会分给一个单独的mapper;它还提供RecordReader的具体实现,这个Reader从逻辑的InputSplit上获取input
records并传给Mapper处理。
InputFormat有多种具体实现,诸如FileInputFormat(处理基于文件的输入的基础抽象类),
DBInputFormat(处理基于数据库的输入,数据来自于一个能用SQL查询的表),KeyValueTextInputFormat(特殊的FineInputFormat,处理Plain
Text
File,文件由回车或者回车换行符分割成行,每一行由key.value.separator.in.input.line分割成Key和Value),CompositeInputFormat,DelegatingInputFormat等。在绝大多数应用场景中都会使用FileInputFormat及其子类型。
通过以上的简单介绍,我们知道InputFormat决定着InputSplit,每个InputSplit会分配给一个单独的Mapper,因此InputFormat决定了具体的Map task数量。
2. FileInputFormat中影响Map数量的因素
在日常使用中,FileInputFormat是最常用的InputFormat,它有很多具体的实现。以下分析的影响Map数量的因素仅对FileInputFormat及其子类有效,其他非FileInputFormat可以去查看相应的
getSplits(JobConf job, int numSplits) 具体实现即可。
请看如下代码段(摘抄自org.apache.hadoop.mapred.FileInputFormat.getSplits)
long goalSize = totalSize / (numSplits == ? : numSplits);
long minSize = Math.max(job.getLong("mapred.min.split.size", ), minSplitSize); for (FileStatus file: files) {
Path path = file.getPath();
FileSystem fs = path.getFileSystem(job);
if ((length != ) && isSplitable(fs, path)) {
long blockSize = file.getBlockSize();
long splitSize = computeSplitSize(goalSize, minSize, blockSize); long bytesRemaining = length;
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
String[] splitHosts = getSplitHosts(blkLocations,length-bytesRemaining, splitSize, clusterMap);
splits.add(new FileSplit(path, length-bytesRemaining, splitSize, splitHosts));
bytesRemaining -= splitSize;
} if (bytesRemaining != ) {
splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkLocations.length-].getHosts()));
}
} else if (length != ) {
String[] splitHosts = getSplitHosts(blkLocations,,length,clusterMap);
splits.add(new FileSplit(path, , length, splitHosts));
} else {
//Create empty hosts array for zero length files
splits.add(new FileSplit(path, , length, new String[]));
}
} return splits.toArray(new FileSplit[splits.size()]); protected long computeSplitSize(long goalSize, long minSize, long blockSize) {
return Math.max(minSize, Math.min(goalSize, blockSize));
}
totalSize:是整个Map-Reduce job所有输入的总大小。numSplits:来自job.getNumMapTasks(),即在job启动时用org.apache.hadoop.mapred.JobConf.setNumMapTasks(int n)设置的值,给M-R框架的Map数量的提示。goalSize:是输入总大小与提示Map task数量的比值,即期望每个Mapper处理多少的数据,仅仅是期望,具体处理的数据数由下面的computeSplitSize决定。minSplitSize:默认为1,可由子类复写函数protected void setMinSplitSize(long minSplitSize) 重新设置。一般情况下,都为1,特殊情况除外。minSize:取的1和mapred.min.split.size中较大的一个。blockSize:HDFS的块大小,默认为64M,一般大的HDFS都设置成128M。splitSize:就是最终每个Split的大小,那么Map的数量基本上就是totalSize/splitSize。接下来看看computeSplitSize的逻辑:首先在goalSize(期望每个Mapper处理的数据量)和HDFS的block size中取较小的,然后与mapred.min.split.size相比取较大的。
3. 如何调整Map的数量有了2的分析,下面调整Map的数量就很容易了。
3.1 减小Map-Reduce job 启动时创建的Mapper数量当处理大批量的大数据时,一种常见的情况是job启动的mapper数量太多而超出了系统限制,导致Hadoop抛出异常终止执行。解决这种异常的思路是减少mapper的数量。具体如下:
3.1.1 输入文件size巨大,但不是小文件这种情况可以通过增大每个mapper的input
size,即增大minSize或者增大blockSize来减少所需的mapper的数量。增大blockSize通常不可行,因为当HDFS被hadoop
namenode
-format之后,blockSize就已经确定了(由格式化时dfs.block.size决定),如果要更改blockSize,需要重新格式化HDFS,这样当然会丢失已有的数据。所以通常情况下只能通过增大minSize,即增大mapred.min.split.size的值。
3.1.2
输入文件数量巨大,且都是小文件所谓小文件,就是单个文件的size小于blockSize。这种情况通过增大mapred.min.split.size不可行,需要使用FileInputFormat衍生的CombineFileInputFormat将多个input
path合并成一个InputSplit送给mapper处理,从而减少mapper的数量。具体细节稍后会更新并展开。
3.2 增加Map-Reduce job 启动时创建的Mapper数量增加mapper的数量,可以通过减小每个mapper的输入做到,即减小blockSize或者减小mapred.min.split.size的值。
hadoop中map和reduce的数量设置的更多相关文章
- hadoop中map和reduce的数量设置问题
转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务 ...
- 如何确定Hadoop中map和reduce的个数--map和reduce数量之间的关系是什么?
一般情况下,在输入源是文件的时候,一个task的map数量由splitSize来决定的,那么splitSize是由以下几个来决定的 goalSize = totalSize / mapred.map. ...
- 【转】Python 中map、reduce、filter函数
转自:http://www.blogjava.net/vagasnail/articles/301140.html?opt=admin 介绍下Python 中 map,reduce,和filter 内 ...
- Python函数式编程中map()、reduce()和filter()函数的用法
Python中map().reduce()和filter()三个函数均是应用于序列的内置函数,分别对序列进行遍历.递归计算以及过滤操作.这三个内置函数在实际使用过程中常常和“行内函数”lambda函数 ...
- Hadoop中map数的计算
转载▼ Hadoop中在计算一个JOB需要的map数之前首先要计算分片的大小.计算分片大小的公式是: goalSize = totalSize / mapred.map.tasks minSize = ...
- Hadoop 系统配置 map 100% reduce 0%
之前在本地配置了hadoop伪分布模式,hdfs用起来没问题,mapreduce的单机模式也没问题. 今天写了个程序,想在伪分布式上跑一下mapreduce,结果出现 map 100% reduce ...
- Java操作Hadoop、Map、Reduce合成
原始数据: Map阶段 1.每次读一行数据, 2.拆分每行数据, 3.每个单词碰到一次写个1 <0, "hello tom"> <10, "hello ...
- pyhton中map和reduce
from functools import reduce import numpy as np ''' reduce[function, sequence[, initial]]使用 1.functi ...
- 廖雪峰教程笔记:js中map和reduce的用法
举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个数组[1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map实现如下: 由于map()方法定义在JavaScript的 ...
随机推荐
- 如何解决ChemDraw引起的系统崩溃
运行ChemDraw应用程序时,一般不会引起系统崩溃,但在使用CS software产品可能会引发计算机崩溃.为了方便广大用户的使用,本教程将教授大家如何解决ChemDraw运行中引起的系统崩溃. 当 ...
- MFC ADO数据库操作
MFC ADO数据库操作 - 延陵小明 - CSDN博客 http://blog.csdn.net/guoming0000/article/details/7280070/ 内容比较乱,作为草稿,对现 ...
- Cocos2d-x 3.0final 终结者系列教程10-画图节点Node中的Action
Action是作用在Node上的逻辑处理,比方让Node移动.旋转.缩放.变色.跳跃.翻转.透明等等.都有相相应的Action Action怎样在Node上使用 1. 定义Action对象 如 aut ...
- org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'UserDao' def
org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'UserDao' def ...
- python2.0_day21_bbs系统评论自动加载+文章创建
day20中我们已经实现了bbs系统的前端展示,后台admin管理,以及前端动态显示顶部\登录和评论的分级展示功能.其中评论的分级展示功能最为复杂.上一节中我们只是在文章明细页面中加了一个button ...
- java.lang.IncompatibleClassChangeError: Implementing class
项目中使用了quartz,但是jar包却有两个,一个1.8版本,一个2.1版本,导致jar包冲突,所以导致一启动tomcat就出现: Caused by: java.lang.Incompatible ...
- Python 练习题:计算 MAC 地址
#!/usr/bin/env python #-*- coding:utf-8 -*- ''' 给一个MAC地址加1 ''' mac = '52:54:00:e6:b2:0a' prefix_mac ...
- poj_1190 树状数组
题目大意 给定一个S*S的矩形,该矩形由S*S个1x1的单元格构成,每个单元格内可以放一个整数,每次有如下可能操作: (1)改变某个单位单元格中的数的大小 (2)查询由若干个连续单元格构成的X*Y的大 ...
- JavaWeb温习之防止表单重复提交
表单重复提交主要有以下三种情况: 1. 在网络延迟的情况下让用户有时间点击多次submit按钮导致表单重复提交 2. 表单提交后用户点击[刷新]按钮导致表单重复提交 3. 用户提交表单后,点击浏览器的 ...
- 用ajax实现用户名的检测(JavaScript方法)
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...