SVM引入拉格朗日乘子[转载]
转自:https://zhidao.baidu.com/question/494249074914968332.html
SVM使用拉格朗日乘子法更为高效地求解了优化问题。
SVM将寻找具有最大几何间隔划分超平面的任务转化成一个凸优化问题,如下所示:
我们当然可以直接使用现成工具求解,但还有更为高效的方法,那就是使用拉格朗日乘子法将原问题转化为对偶问题求解。
具体做法是:
(1)将约束融入目标函数中,得到拉格朗日函数;
(2)然后对模型参数w和b求偏导,并令之为零;
(3)得到w后,将其带入拉格朗日函数中,消去模型参数w和b;
(4)这样就得到了原问题的对偶问题,对偶问题和原问题等价,同时对偶问题也是一个凸优化问题,使用SMO算法求解拉格朗日乘子;
(5)得到拉格朗日乘子后,进一步可以得到模型参数w和b,也就得到了我们想要的划分超平面。
SVM引入拉格朗日乘子[转载]的更多相关文章
- 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...
- projective dynamics的global solve中 引入拉格朗日乘子的简化方法
想了一下使用乘子法还是可行的/做一个简化.在约束C(xn) 在C(xn-1)处线性展开 (n是时间步骤)具体推导留作备份等有时间了去代码实现 3式是一个典型的LCP问题 用PGS就行 左边的系数部分依 ...
- 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题
1 前言 拉格朗日乘子法(Lagrange Multiplier) 和 KKT(Karush-Kuhn-Tucker) 条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...
- 机器学习笔记——拉格朗日乘子法和KKT条件
拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法,通过引入拉格朗日乘子,可将有m个变量和n个约束条件的最优化问题转化为具有m+n个变量的无约束优化问题.在介绍拉格朗日乘子法之前,先简要的介绍一些 ...
- KKT条件和拉格朗日乘子法详解
\(\frac{以梦为马}{晨凫追风}\) 最优化问题的最优性条件,最优化问题的解的必要条件和充分条件 无约束问题的解的必要条件 \(f(x)\)在\(x\)处的梯度向量是0 有约束问题的最优性条件 ...
- 线段拟合(带拉格朗日乘子,HGL)
线段特征上的扫描点满足 (1).本文的线段特征定义为:L: [dL, φL, PLs, PLe]T,如图1所示.其中,dL为笛卡尔坐标系中原点(激光传感器所在位置)到线段的距离, φL为线段特征的倾角 ...
- 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题
参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...
- 支持向量机(SVM)必备概念(凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件)
SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有 ...
- 关于拉格朗日乘子法和KKT条件
解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报 分类: 模式识别&机器学习(42 ...
随机推荐
- 关于BroadCastReceiver安全性的思考
尊重原创:http://blog.csdn.net/yuanzeyao/article/details/38948863 BroadCastReceiver是Android 四大组件之中的一个,应用非 ...
- SaltStack 如何自定义 grains 信息
首先在 minion 上编辑 grains 配置文件,然后添加自定义的 grains: [root@localhost ~]$ cat /etc/salt/grains # 这个文件默认是没有的 ro ...
- Unity鼠标点击Collider
void OnGUI() { if (Event.current != null && Event.current.type == EventType.mouseDown) { )) ...
- Unity随机Prefab,自动前往某点处理
对与U3D AI,看了下,自己做了小功能,以备后用啊! 一,在某区域随机产生某个对象 C# 文件名称为RadomAPoint.cs using UnityEngine; using System.C ...
- linux复制文件到指定的文件夹
copy命令 该命令的功能是将给出的文件或目录拷贝到另一文件或目录中,同MSDOS下的copy命令一样,功能十分强大. 语法: cp [选项] 源文件或目录 目标文件或目录 说明:该命令把指 ...
- N76E003学习之路(二)
最近一直在想N76E003和STM8M003的对比情况,在网上找了不少资料,看了不少文档,具体总结如下: STM8S003F3P6:一共20个脚,最多支持16个GPIO,支持16个外部中断:2个16位 ...
- iOS开发:iOS中图片与视频一次性多选 - v2m
一.使用系统的Assets Library Framework这个是用来访问Photos程序中的图片和视频的库.其中几个类解释如下 ALAsset ->包含一个图片或视频的各种信息 ALAsse ...
- 一个java源文件中是否可以包括多个类(非内部类)?有何限制?
可以有多个类,但只能有一个public的类,并且public的类名必须与文件名一致.
- Linux find、grep命令详细用法
在linux下面工作,有些命令能够大大提高效率.本文就向大家介绍find.grep命令,他哥俩可以算是必会的linux命令,我几乎每天都要用到他们.本文结构如下:find命令 find命令的一般形式 ...
- ios unrecognized selector sent to instance出现的原因和解决方案
概述:造成unrecognized selector sent to instance iphone,大部分情况下是因为对象被提前release了,在你心里不希望他release的情况下,指针还在,对 ...