Luogu4433:[COCI2009-2010#1] ALADIN(类欧几里德算法)
先套用一个线段树维护离散化之后的区间的每一段的答案
那么只要考虑怎么下面的东西即可
\]
拆开就是
\]
只要考虑计算 \(\sum_{i=1}^{n}\lfloor\frac{A\times i}{B}\rfloor\) 即可
类欧几里德算法
若 \(A>B\),那么就是
\]
变成 \(A<B\) 的情况
对于 \(A<B\),那么可以看成是求直线 \(y=\frac{A}{B}\times i,i\in[1,n]\) 与坐标轴围成的三角形中的整点的个数
设 \(m=\lfloor\frac{A\times n}{B}\rfloor\)
把问题为矩形 \((0,0),(n,m)\) 内的减去三角形 \((0,0),(n,m),(0,m)\) 内的再加上对角线的
对角线上的就是 \(\frac{n\times gcd(A,B)}{B}\),矩形内的就是 \(n\times m\)
对于那个三角形的,反转坐标系后相当于是求直线 \(y=\frac{B}{A}\times i,i\in[1,\lfloor\frac{A\times n}{B}\rfloor]\) 与坐标轴围成的三角形中的整点的个数
即
\]
递归处理即可,复杂度和 \(gcd\) 一样
可以先把 \(A,B\) 同时除去 \(gcd\) 后再做
这个题注意一个细节
\]
直接求的可能会爆 \(long \ long\)
可以对 \(B\) 分段,算出长度为 \(B\) 的乘上 \(\lfloor\frac{n}{B}\rfloor\),再加上长度为 \(n \ mod \ B\) 的,可以接受
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace IO {
const int maxn(1 << 21 | 1);
char ibuf[maxn], *iS, *iT, c;
int f;
inline char Getc() {
return iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, maxn, stdin), (iS == iT ? EOF : *iS++)) : *iS++;
}
template <class Int> inline void In(Int &x) {
for (f = 1, c = Getc(); c < '0' || c > '9'; c = Getc()) f = c == '-' ? -1 : 1;
for (x = 0; c >= '0' && c <= '9'; c = Getc()) x = (x << 1) + (x << 3) + (c ^ 48);
x *= f;
}
}
using IO :: In;
const int maxn(1e5 + 5);
int n, m, o[maxn], cnt;
struct Segment {
ll sum;
int a, b, l;
} tr[maxn << 2];
inline void Update(int x) {
tr[x].sum = tr[x << 1].sum + tr[x << 1 | 1].sum;
}
inline int Gcd(int a, int b) {
return !b ? a : Gcd(b, a % b);
}
inline ll Mul(int a, int b, int len) {
register int k = a / b;
register ll sum = 1LL * k * (len + 1) * len / 2;
if (!(a %= b) || !b) return sum;
register int m = 1LL * len * a / b;
assert(m >= 0);
return 1LL * len * m + len / b - Mul(b, a, m) + sum;
}
inline ll Calc(int a, int b, int len) {
if (len < 1 || a == b || b == 1) return 0;
register int g = Gcd(a, b);
return 1LL * a * len * (len + 1) / 2 - 1LL * b * Mul(a / g, b / g, len);
}
inline ll Solve(int a, int b, int len) {
register ll ret = Calc(a, b, len % b);
if (len >= b) ret += 1LL * len / b * Calc(a, b, b);
return ret;
}
inline void Add(int x, int a, int b, int l, int len) {
tr[x].a = a, tr[x].b = b, tr[x].l = l;
tr[x].sum = Solve(a, b, l + len - 1) - Solve(a, b, l - 1);
}
inline void Pushdown(int x, int l, int r) {
if (!tr[x].a) return;
register int mid = (l + r) >> 1;
Add(x << 1, tr[x].a, tr[x].b, tr[x].l, o[mid] - o[l]);
Add(x << 1 | 1, tr[x].a, tr[x].b, tr[x].l + o[mid] - o[l], o[r] - o[mid]);
tr[x].a = tr[x].b = tr[x].l = 0;
}
ll Query(int x, int l, int r, int ql, int qr) {
if (l >= qr || r <= ql) return 0;
if (ql <= l && qr >= r) return tr[x].sum;
Pushdown(x, l, r);
register int mid = (l + r) >> 1;
register ll ret = 0;
if (ql <= mid) ret = Query(x << 1, l, mid, ql, qr);
if (qr >= mid) ret += Query(x << 1 | 1, mid, r, ql, qr);
return ret;
}
void Modify(int x, int l, int r, int ql, int qr, int a, int b) {
if (l >= qr || r <= ql) return;
if (ql <= l && qr >= r) {
Add(x, a, b, o[l] - o[ql] + 1, o[r] - o[l]);
return;
}
Pushdown(x, l, r);
register int mid = (l + r) >> 1;
if (ql <= mid) Modify(x << 1, l, mid, ql, qr, a, b);
if (qr >= mid) Modify(x << 1 | 1, mid, r, ql, qr, a, b);
Update(x);
}
int op[maxn], ql[maxn], qr[maxn], a[maxn], b[maxn];
int main () {
In(n), In(m);
register int i, l, r;
for (i = 1; i <= m; ++i) {
In(op[i]), In(ql[i]), In(qr[i]), --ql[i];
o[++cnt] = ql[i], o[++cnt] = qr[i];
if (op[i] == 1) In(a[i]), In(b[i]);
}
sort(o + 1, o + cnt + 1), cnt = unique(o + 1, o + cnt + 1) - o - 1;
for (i = 1; i <= m; ++i) {
l = lower_bound(o + 1, o + cnt + 1, ql[i]) - o;
r = lower_bound(o + 1, o + cnt + 1, qr[i]) - o;
if (op[i] == 1) Modify(1, 1, cnt, l, r, a[i], b[i]);
else printf("%lld\n", Query(1, 1, cnt, l, r));
}
return 0;
}
Luogu4433:[COCI2009-2010#1] ALADIN(类欧几里德算法)的更多相关文章
- UOJ#42. 【清华集训2014】Sum 类欧几里德算法
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ42.html 题解 首先我们把式子改写一下: $$(-1)^{\lfloor a\rfloor} \\=1 ...
- 2018牛客网暑假ACM多校训练赛(第十场)H Rikka with Ants 类欧几里德算法
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round10-H.html 题目传送门 - https://www.n ...
- BZOJ2987:Earthquake(类欧几里德算法)
Sol 设 \(n=\lfloor\frac{c}{a}\rfloor\) 问题转化为求 \[\sum_{i=0}^{n}\lfloor\frac{c-ax}{b}\rfloor+1=\sum_{i= ...
- 类欧几里德算法(洛谷 P5170
#include <iostream> #include <cstdio> #include <queue> #include <algorithm> ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- POJ 1061青蛙的约会(拓展欧几里德算法)
题目链接: 传送门 青蛙的约会 Time Limit: 1000MS Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
随机推荐
- 47.ActiveMQ集群
(声明:本文非EamonSec原创) 使用ZooKeeper实现的Master-Slave实现方式,是对ActiveMQ进行高可用的一种有效的解决方案,高可用的原理:使用ZooKeeper(集群)注册 ...
- Java NIO学习与记录(三): Scatter&Gather介绍及使用
Scatter&Gather介绍及使用 上一篇知道了Buffer的工作机制,以及FileChannel的简单用法,这一篇介绍下 Scatter&Gather 1.Scatter(分散 ...
- 插播一条 QQ头像无法正常显示问题
问题背景 不知道啥什么,QQ群的头像有些显示不全直接是默认的头像.想一想最近也没做啥,怎么就出问题了. 后来想一想,大概是个人文件夹的文件出问题了 解决办法 好友头像显示问题的删除 MiscHead. ...
- 【old】Python学习笔记
上学期看视频记得,也没学到多少,目前打算一边通过<Python学习手册 第四版>提高核心语法(太厚了 噗),一边学习Python Web开发 然后这里的多任务编程和网络编程是暑假学的 5. ...
- 通过MSI解压缩Cab文件
迁移自我的Github 如果只是想做类似解压缩的操作,那么可以使用如下命令行 C:\Windows\System32\expand.exe <cab file path> -F:* < ...
- masm32环境配置
软件: Windows7-32bit visual c++6.0 Masm32 sdk 11 安装: 0x00 || 下载Masm sdk 11并安装,下载路径:http://www.masm32.c ...
- Nginx PHP fpm forbidden 原因
可能是标红目录层级不一致 location / { root /var/www/html/public; index index.php; } location ~ \.php$ { root /va ...
- 第1章—Spring之旅—Spring模块介绍
Spring模块介绍 Spring7大核心模块: 核心容器(Spring Core) 核心容器提供Spring框架的基本功能.Spring以bean的方式组织和管理Java应用中的各个组件及其关系.S ...
- JVM-类加载过程(Java类的生命周期)
什么是类加载 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构.类的 ...
- accessToken的使用
1.accessToken是啥,干嘛用? 形象解释:申请调兵-->皇帝同意-->兵符-->开始调兵 拿到用户在第三方平台的唯一的标识; 获取用户的nickname,头像,邮箱等其他信 ...