思路:一开始不会n^4的推导,原来是要找n和n-1的关系,这道题的MOD是long long 的,矩阵具体如下所示

最近自己总是很坑啊,代码都瞎吉坝写,一个long long的输入写成%d一直判我TLE,一度怀疑矩阵快速幂地复杂度orz

代码:

#include<set>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define ll long long
const int maxn = 7;
const ll MOD = 2147493647;
const int INF = 0x3f3f3f3f;
using namespace std;
struct Mat{
ll s[maxn][maxn];
}; Mat mul(Mat a,Mat b){
Mat t;
memset(t.s,0,sizeof(t));
for(int i = 0;i < maxn;i++){
for(int j = 0;j < maxn;j++){
for(int k = 0;k < maxn;k++){
t.s[i][j] = (t.s[i][j] + a.s[i][k]*b.s[k][j])%MOD;
}
}
}
return t;
}
Mat pow_mat(Mat p,int n){
Mat ret;
memset(ret.s,0,sizeof(ret.s));
for(int i = 0;i < maxn;i++)
ret.s[i][i] = 1;
while(n){
if(n & 1) ret = mul(ret,p);
p = mul(p,p);
n >>= 1;
}
return ret;
}
int main(){
ll T,a,b,n;
Mat A,B,C;
memset(A.s,0,sizeof(A.s));
A.s[0][0] = A.s[0][2] = A.s[1][0] = A.s[2][2] = A.s[3][3] = A.s[4][4] = A.s[5][5] = 1;
for(int i = 0;i < 7;i++)
A.s[i][6] = 1;
A.s[1][6] = 0;
A.s[0][1] = A.s[4][5] = 2;
A.s[3][4] = A.s[3][5] = 3;
A.s[0][3] = A.s[0][5] = A.s[2][3] = A.s[2][5] = 4;
A.s[0][4] = A.s[2][4] = 6;
/*for(int i = 0;i < 7;i++){
for(int j = 0;j < 7;j++){
printf("%d ",A.s[i][j]);
}
printf("\n");
}*/
scanf("%lld",&T);
while(T--){
scanf("%lld%lld%lld",&n,&a,&b);
if(n == 1){
printf("%lld\n",a);
}
else if(n == 2){
printf("%lld\n",b);
}
else{
C = pow_mat(A,n - 2);
ll ans = 0;
ans = (C.s[0][0]*b%MOD + C.s[0][1]*a%MOD + C.s[0][2]*16%MOD +
C.s[0][3]*8%MOD + C.s[0][4]*4%MOD + C.s[0][5]*2%MOD + C.s[0][6])%MOD;
printf("%lld\n",ans);
}
}
return 0;
}

HDU 5950 Recursive sequence(矩阵快速幂)题解的更多相关文章

  1. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  2. hdu 5950 Recursive sequence 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  3. 5950 Recursive sequence (矩阵快速幂)

    题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn; 析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无 ...

  4. Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)

    题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...

  5. HDU5950 Recursive sequence —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others)   ...

  6. HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)

    题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...

  7. HDU - 1005 Number Sequence 矩阵快速幂

    HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...

  8. HDU - 1005 -Number Sequence(矩阵快速幂系数变式)

    A number sequence is defined as follows:  f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...

  9. HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)

    Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...

  10. CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs

    题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  i < k\\ ...

随机推荐

  1. vux报错 this指针问题

    报错: 代码: 结果:取不到this.tishi,不明白为什么在请求内部会取不到这个值. 分析:this可能有问题 解决: 结果: 这样就能取到this.tishi的值了. 总结: methods:{ ...

  2. ts和js中let和var定义变量的区别

    javascript 严格模式 第一次接触let关键字,有一个要非常非常要注意的概念就是”JavaScript 严格模式”,比如下述的代码运行就会报错: let hello = 'hello worl ...

  3. FlashDevelop导入swc库

    项目不是AS项目,而是基于FlashIDE. 一 将SWC放入项目lib文件夹下 二 选择lib文件夹,右键,选择添加到库 三  FlashIDE中选择 文件-ActionScript设置 四 选择浏 ...

  4. Android Studio 解决Fetching android sdk component information加载过久问题

    extends:http://www.cnblogs.com/sonyi/p/4154797.html 安装完成后,如果直接启动,Android Studio会去获取 android sdk 组件信息 ...

  5. 微信小程序 --- 缓存数据

    保存数据  /  读取数据  /  删除数据  /  数据异步操作 每一个微信小程序都可以有自己的本地缓存,可以通过wx.setStorage( wx.setStorageSync) ,wx.getS ...

  6. 【node】------node连接mongodb操作数据库------【巷子】

    1.下载第三方模块mongodb cnpm install mongodb --save 2.检测是否连接成功 1.引入第三方模块mongodb并创建一个客户端 const MongoClient = ...

  7. Jenkins之构建执行脚本权限问题

    Jenkins需要执行的脚本不在本机需要ssh免密码登陆到远程主机执行 Jenkins部署机ip地址为192.168.56.12 需要远程执行脚本的主机为192.168.56.11 设置好密钥可以使用 ...

  8. Python开发【Tornado】:简介与使用

    Tornado框架 简介: Tornado是使用Python编写的一个强大的.可扩展的Web服务器.它在处理严峻的网络流量时表现得足够强健,但却在创建和编写时有着足够的轻量级,并能够被用在大量的应用和 ...

  9. IT运营新世界大会:广通软件开启双态运维大时代

    10月28日,第一届“IT运营新世界大会”在北京成功举办.大会上由10家ITOM领域的标杆企业宣布结成“ITOM联盟”. 广通软件(证券代码:833322)作为大会的创始成员全程推动见证了这一历史时刻 ...

  10. 小米范工具系列之二:小米范 web目录扫描器

    最新版本1.1,下载地址:http://pan.baidu.com/s/1c1NDSVe  文件名scandir,请使用java1.8运行 小米范web目录扫描器主要功能是探测web可能存在的目录及文 ...