HBase是Apache Hadoop的数据库,能够对大型数据提供随机、实时的读写访问。HBase的目标是存储并处理大型的数据。HBase是一个开源的,分布式的,多版本的,面向列的存储模型。它存储的是松散型数据。

HBase特性:

1 高可靠性

2 高效性

3 面向列

4 可伸缩

5 可在廉价PC Server搭建大规模结构化存储集群

HBase是Google BigTable的开源实现,其相互对应如下:

          Google            HBase
文件存储系统      GFS              HDFS
海量数据处理      MapReduce Hadoop     MapReduce
协同服务管理    Chubby           Zookeeper

HBase关系图:

HBase位于结构化存储层,围绕HBase,各部件对HBase的支持情况:
Hadoop部件            作用
HDFS              高可靠的底层存储支持
MapReduce             高性能的计算能力
Zookeeper            稳定服务和failover机制
Pig&Hive             高层语言支持,便于数据统计
Sqoop              提供RDBMS数据导入,便于传统数据库向HBase迁移

访问HBase的接口

方式            特点              场合
Native Java API      最常规和高效            Hadoop MapReduce Job并行处理HBase表数据
HBase Shell         最简单接口             HBase管理使用
Thrift Gateway      利用Thrift序列化支持多种语言     异构系统在线访问HBase表数据
Rest Gateway       解除语言限制            Rest风格Http API访问
Pig            Pig Latin六十编程语言处理数据   数据统计
Hive            简单,SqlLike

HBase 数据模型

组成部件说明:

Row Key:     Table主键 行键 Table中记录按照Row Key排序
Timestamp:     每次对数据操作对应的时间戳,也即数据的version number
Column Family:  列簇,一个table在水平方向有一个或者多个列簇,列簇可由任意多个Column组成,列簇支持动态扩展,无须预定义数量及类型,二进制存储,用户需自行进行类型转换

Table&Region

1. Table随着记录增多不断变大,会自动分裂成多份Splits,成为Regions
2. 一个region由[startkey,endkey)表示
3. 不同region会被Master分配给相应的RegionServer进行管理

两张特殊表:-ROOT- & .META.

.META.   记录用户表的Region信息,同时,.META.也可以有多个region
-ROOT-    记录.META.表的Region信息,但是,-ROOT-只有一个region
Zookeeper中记录了-ROOT-表的location
客户端访问数据的流程:
Client -> Zookeeper -> -ROOT- -> .META. -> 用户数据表
多次网络操作,不过client端有cache缓存

HBase 系统架构图

组成部件说明
Client:
使用HBase RPC机制与HMaster和HRegionServer进行通信
Client与HMaster进行通信进行管理类操作
Client与HRegionServer进行数据读写类操作

Zookeeper:
Zookeeper Quorum存储-ROOT-表地址、HMaster地址
HRegionServer把自己以Ephedral方式注册到Zookeeper中,HMaster随时感知各个HRegionServer的健康状况
Zookeeper避免HMaster单点问题

HMaster:
HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master在运行
主要负责Table和Region的管理工作:
1 管理用户对表的增删改查操作
2 管理HRegionServer的负载均衡,调整Region分布
3 Region Split后,负责新Region的分布
4 在HRegionServer停机后,负责失效HRegionServer上Region迁移

HRegionServer:
HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据

HRegionServer管理一些列HRegion对象;
每个HRegion对应Table中一个Region,HRegion由多个HStore组成;
每个HStore对应Table中一个Column Family的存储;
Column Family就是一个集中的存储单元,故将具有相同IO特性的Column放在一个Column Family会更高效

HStore:
HBase存储的核心。由MemStore和StoreFile组成。
MemStore是Sorted Memory Buffer。用户写入数据的流程:

Client写入 -> 存入MemStore,一直到MemStore满 -> Flush成一个StoreFile,直至增长到一定阈值 -> 出发Compact合并操作 -> 多个StoreFile合并成一个StoreFile,同时进行版本合并和数据删除 -> 当StoreFiles Compact后,逐步形成越来越大的StoreFile -> 单个StoreFile大小超过一定阈值后,触发Split操作,把当前Region Split成2个Region,Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上
由此过程可知,HBase只是增加数据,有所得更新和删除操作,都是在Compact阶段做的,所以,用户写操作只需要进入到内存即可立即返回,从而保证I/O高性能。

HLog
引入HLog原因:
在分布式系统环境中,无法避免系统出错或者宕机,一旦HRegionServer以外退出,MemStore中的内存数据就会丢失,引入HLog就是防止这种情况
工作机制:
每个HRegionServer中都会有一个HLog对象,HLog是一个实现Write Ahead Log的类,每次用户操作写入Memstore的同时,也会写一份数据到HLog文件,HLog文件定期会滚动出新,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知,HMaster首先处理遗留的HLog文件,将不同region的log数据拆分,分别放到相应region目录下,然后再将失效的region重新分配,领取到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

HBase存储格式
HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,格式主要有两种:
1 HFile HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile
2 HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

HFile

图片解释:
HFile文件不定长,长度固定的块只有两个:Trailer和FileInfo
Trailer中指针指向其他数据块的起始点
File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等
Data Index和Meta Index块记录了每个Data块和Meta块的起始点
Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制
每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询
每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏

HFile里面的每个KeyValue对就是一个简单的byte数组。这个byte数组里面包含了很多项,并且有固定的结构。

KeyLength和ValueLength:两个固定的长度,分别代表Key和Value的长度
Key部分:Row Length是固定长度的数值,表示RowKey的长度,Row 就是RowKey
Column Family Length是固定长度的数值,表示Family的长度
接着就是Column Family,再接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)
Value部分没有这么复杂的结构,就是纯粹的二进制数据

HLog File

HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是“写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。
HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue

参考文章 http://www.searchtb.com/2011/01/understanding-hbase.html

参考文章 http://my.oschina.net/u/923508/blog/393766

参考文章 http://www.cnblogs.com/shitouer/archive/2012/06/04/2533518.html

 
 

HBase原理、基本概念、基本架构-3的更多相关文章

  1. Hbase学习之概念与原理

    一.hbase与列式存储 hbase最早起源于谷歌的一篇BigTable的论文,它是由java编写的.开源的一个nosql数据库,同时它也是一个列式存储的.支持分布式(基于hdfs)的数据库.什么是列 ...

  2. 【转】HBase原理和设计

    简介 HBase —— Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据.实现数据分布式存储提供可靠的方 ...

  3. Hbase原理

    Hbase原理 概述 HBase是一个构建在HDFS上的分布式列存储系统:HBase是基于Google BigTable模型开发的,典型的key/value系统:HBase是Apache Hadoop ...

  4. HBase原理和设计

    转载 2016年1月10日:http://www.sysdb.cn/index.php/2016/01/10/hbase_principle/ 简介 架构 数据组织 原理 RS定位 region写入 ...

  5. HBase原理、设计与优化实践

    转自:http://www.open-open.com/lib/view/open1449891885004.html 1.HBase 简介 HBase —— Hadoop Database的简称,G ...

  6. HBase之一:HBase原理和设计

    一.简介 HBase —— Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据.实现数据分布式存储提供可靠 ...

  7. HBase笔记:对HBase原理的简单理解

    早些时候学习hadoop的技术,我一直对里面两项技术倍感困惑,一个是zookeeper,一个就是Hbase了.现在有机会专职做大数据相关的项目,终于看到了HBase实战的项目,也因此有机会搞懂Hbas ...

  8. HBase、HDFS和MapReduce架构异同简解

    HBase.HDFS和MapReduce架构异同 .. HBase(公司架构模型) HDFS2.0(公司架构模型) MR2.0(公司架构模型) MR1.0(公司架构模型) 中央 HMaster Nam ...

  9. HBase原理和安装

    HBase的基本概念和安装: Hbase简介 HBase的原型是Google的BigTable论文,受到了该论文思想的启发,目前作为Hadoop的子项目来开发维护,用于支持结构化的数据存储. 官方网站 ...

  10. 大数据技术之_11_HBase学习_01_HBase 简介+HBase 安装+HBase Shell 操作+HBase 数据结构+HBase 原理

    第1章 HBase 简介1.1 什么是 HBase1.2 HBase 特点1.3 HBase 架构1.3 HBase 中的角色1.3.1 HMaster1.3.2 RegionServer1.3.3 ...

随机推荐

  1. CentOS的字符集locale的设置

    LANGLC_*的默认值,是最低级别的设置,如果LC_*没有设置,则使用该值.类似于 LC_ALL. LC_ALL它是一个宏,如果该值设置了,则该值会覆盖所有LC_*的设置值.注意,LANG的值不受该 ...

  2. vim:inoremap命令

    inoremap命令用于映射按键. i代表是在插入模式(insert)下有效 nore表示不递归no recursion,例如:inoremap Y y和inoremap y Y并不会出现无限循环. ...

  3. PHP二维数组如何根据某个字段排序

    分享下PHP二维数组如何根据某个字段排序的方法. 从两个不同的表中获取各自的4条数据,然后整合(array_merge)成一个数组,再根据数据的创建时间降序排序取前4条. 本文记录的要实现的功能类似于 ...

  4. 【Android】9.2 内置行视图的分类和呈现效果

    分类:C#.Android.VS2015: 创建日期:2016-02-18 一.简介 Android内置了很多行视图模板,在应用程序中可直接使用这些内置的视图来呈现列表项. 要在ListView中使用 ...

  5. 在 Linux 上使用 Nginx 和 Gunicorn 托管 Django 应用

    介绍 托管 Django Web 应用程序相当简单,虽然它比标准的 PHP 应用程序更复杂一些. 让 Web 服务器对接 Django 的方法有很多. Gunicorn 就是其中最简单的一个. Gun ...

  6. Oracle 每五千条执行一次的sql语句

    今天碰到一个问题,更新历史数据时,由于数据库表数据量太大,单行更新速度很慢,要求每五千条执行一次提交进行更新.执行SQL如下: declare i_count int; i_large int; be ...

  7. 网络编程----------SOCKET编程实现简单的TCP协议

    首先我们须要大致了解TCP的几点知识: 1.TCP的特点:面向连接的可靠性传输 2.TCP的三次握手建立连接和四次挥手释放连接.但为什么TCP要三次握手建立连接呢? 答:由于两次握手无法保证可靠性.若 ...

  8. C语言可变参数宏及‘##’在可变参数中的作用

    测试代码及解释: #include <stdio.h> #define PRINT(x) printf x #define SECONDPRINT(fmt,arg...) printf(f ...

  9. ny16 矩形嵌套

    矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a< ...

  10. Eclipse中设置文件编码

    如果你在使用某个editor进行开发的话,文件编码就由改editor解决即可 Eclipse中也有这个功能,帮你设置文件的编码,选择Edit->Set Encoding即可 注意,这个选项针对不 ...