一 索引的原理

1. 索引原理

索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查火车车次,飞机航班等

本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。

数据库也是一样,但显然要复杂的多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段......这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的。而数据库实现比较复杂,一方面数据是保存在磁盘上的,另外一方面为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。

2. 磁盘IO与预读

前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS(Million Instructions Per Second)的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行约450万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供大家参考:

 

考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。

二 索引的数据结构

前面讲了索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生。

如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

###b+树的查找过程
如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

###b+树性质
1.索引字段要尽量的小:通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。
2.索引的最左匹配特性:当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

三 MySQL索引管理

1. 功能

#1. 索引的功能就是加速查找
#2. mysql中的primary key,unique,联合唯一也都是索引,这些索引除了加速查找以外,还有约束的功能

2. MySQL的索引分类

普通索引index:加速查找

唯一索引:
-主键索引primary key:加速查找+约束(不为空、不能重复)
-唯一索引unique:加速查找+约束(不能重复) 联合索引(组合索引):
-primary key(id,name):联合主键索引
-unique(id,name):联合唯一索引
-index(id,name):联合普通索引
举个例子来说,比如你在为某商场做一个会员卡的系统。

这个系统有一个会员表
有下列字段:
会员编号 int
会员姓名 varchar(10)
会员身份证号码 varchar(18)
会员电话 varchar(10)
会员住址 varchar(50)
会员备注信息 text 那么这个 会员编号,作为主键,使用 primary
会员姓名 如果要建索引的话,那么就是普通的 index
会员身份证号码 如果要建索引的话,那么可以选择 unique (唯一的,不允许重复) #除此之外还有全文索引,即FULLTEXT
会员备注信息 , 如果需要建索引的话,可以选择全文搜索。
用于搜索很长一篇文章的时候,效果最好。
用在比较短的文本,如果就一两行字的,普通的 index 也可以。
但其实对于全文搜索,我们并不会使用MySQL自带的该索引,而是会选择第三方软件如Sphinx,专门来做全文搜索。 #其他的如空间索引SPATIAL,了解即可,几乎不用

各个索引的应用场景

3. 索引的两大类型hash与btree

#我们可以在创建上述索引的时候,为其指定索引类型,分两类
hash类型的索引:查询单条快,范围查询慢
btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它) #不同的存储引擎支持的索引类型也不一样
InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;

4. 创建/删除索引的语法

1 创建索引

#方法一:创建表时
- 在创建表时就创建
  create table 表名 (
字段名1 数据类型 [完整性约束条件…],
字段名2 数据类型 [完整性约束条件…],
[unique | fulltext | spatial ] index | key
[索引名] (字段名[(长度)] [asc |desc])
);
#例:
create table s1(
id int,
name char(6),
age int,
email varchar(30),
index(id) #不是约束条件,故不能直接跟在字段后面
); #方法二:CREATE在已存在的表上创建索引
create [unique | fulltext | spatial ] index 索引名
on 表名 (字段名[(长度)] [asc |desc]) ; #例 - 在创建表后创建
create index name on s1(name);#添加普通索引
create unique index age on s1(age);#添加唯一索引
create index name on s1(id,name);#添加联合普通索引 #方法三:ALTER TABLE在已存在的表上创建索引
alter table 表名 add [unique | fulltext | spatial ] index
索引名 (字段名[(长度)] [asc |desc]) ;
#例:
alter table s1 add primary key(id);#添加主键索引 2 删除索引
# 删除索引:DROP INDEX 索引名 ON 表名字;
#例:
drop index id on s1;
drop index name on s1;
alter table s1 drop primary key; # 删除主键索引

四 测试索引

1. 准备

#1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
); #2. 创建存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
declare i int default 1;
while(i<300000)do #插入比较慢,耗时比较长
insert into s1 values(i,concat('egon',i),'male',concat('egon',i,'@oldboy'));
set i=i+1;
end while;
END$$ #$$结束
delimiter ; #重新声明分号为结束符号 #3. 查看存储过程
show create procedure auto_insert1\G #4. 调用存储过程
call auto_insert1();

2. 在没有索引的前提下测试查询速度

#无索引:从头到尾扫描一遍,所以查询速度很慢
mysql> select * from s1 where id=333;
+------+---------+--------+----------------+
| id | name | gender | email |
+------+---------+--------+----------------+
| 333 | egon333 | male | egon333@oldboy |
+------+---------+--------+----------------+
1 row in set (0.17 sec) mysql> select * from s1 where email='egon333@oldboy';
+------+---------+--------+----------------+
| id | name | gender | email |
+------+---------+--------+----------------+
| 333 | egon333 | male | egon333@oldboy |
+------+---------+--------+----------------+
1 row in set (0.15 sec)

3. 加上索引

#1. 一定是为搜索条件的字段创建索引,比如select * from s1 where id=333;就需要为id加上索引

#2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,插入删除更新都很慢,只有查询快
比如create index idx on s1(id);会扫描表中所有的数据,然后以id为数据项,创建索引结构,存放于硬盘的表中。
建完以后,再查询就会很快了 #3. 需要注意的是:innodb表的索引会存放于s1.ibd文件中,而myisam表的索引则会有单独的索引文件table1.MYI

ps:我们可以去mysql的data目录下找到该表,可以看到占用的硬盘空间多了

五 正确使用索引

1. 并不是说我们创建了索引就一定会加快查询速度,如果查询的是一个大范围(小范围的话也有提升)或者模糊查询,查询速度并没有太大提升

mysql> select count(*) from s1 where id=1000;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where id>1000;
+----------+
| count(*) |
+----------+
| 298999 |
+----------+
1 row in set (0.11 sec) mysql> select count(*) from s1 where id>1000 and id < 2000;
+----------+
| count(*) |
+----------+
| 999 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where id>1000 and id < 300000;
+----------+
| count(*) |
+----------+
| 298999 |
+----------+
1 row in set (0.13 sec)

例子

2. 覆盖索引与索引合并

#覆盖索引:
- 在索引文件中直接获取数据
http://blog.itpub.net/22664653/viewspace-774667/ #分析
select * from s1 where id=123;
该sql命中了索引,但未覆盖索引。
利用id=123到索引的数据结构中定位到该id在硬盘中的位置,或者说再数据表中的位置。
但是我们select的字段为*,除了id以外还需要其他字段,这就意味着,我们通过索引结构取到id还不够,还需要利用该id再去找到该id所在行的其他字段值,这是需要时间的,很明显,如果我们只select id,就减去了这份苦恼,如下
select id from s1 where id=123;
这条就是覆盖索引了,命中索引,且从索引的数据结构直接就取到了id在硬盘的地址,速度很快
#索引合并:把多个单列索引合并使用

#分析:
组合索引能做到的事情,我们都可以用索引合并去解决,比如
create index ne on s1(name,email);#组合索引
我们完全可以单独为name和email创建索引 组合索引可以命中:
select * from s1 where name='egon' ;
select * from s1 where name='egon' and email='adf'; 索引合并可以命中:
select * from s1 where name='egon' ;
select * from s1 where email='adf';
select * from s1 where name='egon' and email='adf'; 乍一看好像索引合并更好了:可以命中更多的情况,但其实要分情况去看,如果是name='egon' and email='adf',那么组合索引的效率要高于索引合并,如果是单条件查,那么还是用索引合并比较合理

3. 若想利用索引达到预想的提高查询速度的效果,我们在添加索引时,必须遵循以下原则

#1.最左前缀匹配原则,非常重要的原则,
create index ix_name_email on s1(name,email,)
- 最左前缀匹配:必须按照从左到右的顺序匹配
select * from s1 where name='egon'; #可以
select * from s1 where name='egon' and email='asdf'; #可以
select * from s1 where email='alex@oldboy.com'; #不可以
mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。 #2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式 #3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录 #4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’); #5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可
1 加索引提速:范围
mysql> select count(*) from s1 where id=1000;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.12 sec) mysql> select count(*) from s1 where id>1000;
+----------+
| count(*) |
+----------+
| 298999 |
+----------+
1 row in set (0.12 sec) mysql> create index a on s1(id)
-> ;
Query OK, 0 rows affected (3.21 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> select count(*) from s1 where id=1000;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where id>1000;
+----------+
| count(*) |
+----------+
| 298999 |
+----------+
1 row in set (0.12 sec) mysql> select count(*) from s1 where id>1000 and id < 2000;
+----------+
| count(*) |
+----------+
| 999 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where id>1000 and id < 300000;
+----------+
| count(*) |
+----------+
| 298999 |
+----------+
1 row in set (0.13 sec) 3 区分度低的字段不能加索引
mysql> select count(*) from s1 where name='xxx';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where name='egon';
+----------+
| count(*) |
+----------+
| 299999 |
+----------+
1 row in set (0.19 sec) mysql> select count(*) from s1 where name='egon' and age=123123123123123;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.45 sec) mysql> create index c on s1(age);
Query OK, 0 rows affected (3.03 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> select count(*) from s1 where name='egon' and age=123123123123123;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where name='egon' and age=10;
+----------+
| count(*) |
+----------+
| 299999 |
+----------+
1 row in set (0.35 sec) mysql> select count(*) from s1 where name='egon' and age=10 and id>3000 and id < 4000;
+----------+
| count(*) |
+----------+
| 999 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where name='egon' and age=10 and id>3000 and email='xxxx';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.47 sec) mysql> create index d on s1(email);
Query OK, 0 rows affected (4.83 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> select count(*) from s1 where name='egon' and age=10 and id>3000 and email='xxxx';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec) mysql> drop index a on s1;
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> drop index b on s1;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> drop index c on s1;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> desc s1;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | char(20) | YES | | NULL | |
| age | int(11) | YES | | NULL | |
| email | varchar(30) | YES | MUL | NULL | |
+-------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec) mysql> select count(*) from s1 where name='egon' and age=10 and id>3000 and email='xxxx';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec) 5 增加联合索引,关于范围查询的字段要放到后面
select count(*) from s1 where name='egon' and age=10 and id>3000 and email='xxxx';
index(name,email,age,id) select count(*) from s1 where name='egon' and age> 10 and id=3000 and email='xxxx';
index(name,email,id,age) select count(*) from s1 where name like 'egon' and age= 10 and id=3000 and email='xxxx';
index(email,id,age,name) mysql> desc s1;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | char(20) | YES | | NULL | |
| age | int(11) | YES | | NULL | |
| email | varchar(30) | YES | | NULL | |
+-------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec) mysql> create index xxx on s1(age,email,name,id);
Query OK, 0 rows affected (6.89 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> select count(*) from s1 where name='egon' and age=10 and id>3000 and email='xxxx';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec) 6. 最左前缀匹配:必须按照从左到右的顺序匹配
index(id,age,email,name)
#条件中一定要出现id
id
id age
id email
id name email #不行
mysql> select count(*) from s1 where id=3000;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.11 sec) mysql> create index xxx on s1(id,name,age,email);
Query OK, 0 rows affected (6.44 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> select count(*) from s1 where id=3000;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where name='egon';
+----------+
| count(*) |
+----------+
| 299999 |
+----------+
1 row in set (0.16 sec) mysql> select count(*) from s1 where email='egon3333@oldboy.com';
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.15 sec) mysql> select count(*) from s1 where id=1000 and email='egon3333@oldboy.com';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where email='egon3333@oldboy.com' and id=3000;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec) 6.索引列不能参与计算,保持列“干净” mysql> select count(*) from s1 where id=3000;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.11 sec) mysql> create index xxx on s1(id,name,age,email);
Query OK, 0 rows affected (6.44 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> select count(*) from s1 where id=3000;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where name='egon';
+----------+
| count(*) |
+----------+
| 299999 |
+----------+
1 row in set (0.16 sec) mysql> select count(*) from s1 where email='egon3333@oldboy.com';
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.15 sec) mysql> select count(*) from s1 where id=1000 and email='egon3333@oldboy.com';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec) mysql> select count(*) from s1 where email='egon3333@oldboy.com' and id=3000;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec)

例子

最左前缀示范

mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.39 sec) mysql> create index idx on s1(id,name,email,gender); #未遵循最左前缀
Query OK, 0 rows affected (15.27 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.43 sec) mysql> drop index idx on s1;
Query OK, 0 rows affected (0.16 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> create index idx on s1(name,email,gender,id); #遵循最左前缀
Query OK, 0 rows affected (15.97 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.03 sec)

索引无法命中的情况需要注意:

- like '%xx'
select * from tb1 where email like '%cn'; - 使用函数
select * from tb1 where reverse(email) = 'wupeiqi'; - or
select * from tb1 where nid = 1 or name = 'seven@live.com'; 特别的:当or条件中有未建立索引的列才失效,以下会走索引
select * from tb1 where nid = 1 or name = 'seven';
select * from tb1 where nid = 1 or name = 'seven@live.com' and email = 'alex' - 类型不一致
如果列是字符串类型,传入条件是必须用引号引起来,不然...
select * from tb1 where email = 999; 普通索引的不等于不会走索引
- !=
select * from tb1 where email != 'alex' 特别的:如果是主键,则还是会走索引
select * from tb1 where nid != 123
- >
select * from tb1 where email > 'alex' 特别的:如果是主键或索引是整数类型,则还是会走索引
select * from tb1 where nid > 123
select * from tb1 where num > 123 #排序条件为索引,则select字段必须也是索引字段,否则无法命中
- order by
select name from s1 order by email desc;
当根据索引排序时候,select查询的字段如果不是索引,则不走索引
select email from s1 order by email desc;
特别的:如果对主键排序,则还是走索引:
select * from tb1 order by nid desc; - 组合索引最左前缀
如果组合索引为:(name,email)
name and email -- 使用索引
name -- 使用索引
email -- 不使用索引 - count(1)或count(列)代替count(*)在mysql中没有差别了 - create index xxxx on tb(title(19)) #text类型,必须制定长度

其他注意事项

- 避免使用select *
- count(1)或count(列) 代替 count(*)
- 创建表时尽量时 char 代替 varchar
- 表的字段顺序固定长度的字段优先
- 组合索引代替多个单列索引(经常使用多个条件查询时)
- 尽量使用短索引
- 使用连接(JOIN)来代替子查询(Sub-Queries)
- 连表时注意条件类型需一致
- 索引散列值(重复高的)不适合建索引,例:性别不适合

六 查询优化神器-explain

关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。

执行计划:让mysql预估执行操作(一般正确)
all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
id,email 慢:
select * from userinfo3 where name='alex' explain select * from userinfo3 where name='alex'
type: ALL(全表扫描)
select * from userinfo3 limit 1;
快:
select * from userinfo3 where email='alex'
type: const(走索引)

http://blog.itpub.net/29773961/viewspace-1767044/

七 慢查询优化的基本步骤

0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3.order by limit 形式的sql语句让排序的表优先查
4.了解业务方使用场景
5.加索引时参照建索引的几大原则
6.观察结果,不符合预期继续从0分析

八 慢日志管理

        慢日志
- 执行时间 > 10
- 未命中索引
- 日志文件路径 配置:
- 内存
show variables like '%query%';
show variables like '%queries%';
set global 变量名 = 值
- 配置文件
mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini' my.conf内容:
slow_query_log = ON
slow_query_log_file = D:/.... 注意:修改配置文件之后,需要重启服务
MySQL日志管理
========================================================
错误日志: 记录 MySQL 服务器启动、关闭及运行错误等信息
二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 以外的操作
查询日志: 记录查询的信息
慢查询日志: 记录执行时间超过指定时间的操作
中继日志: 备库将主库的二进制日志复制到自己的中继日志中,从而在本地进行重放
通用日志: 审计哪个账号、在哪个时段、做了哪些事件
事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等
========================================================
一、bin-log
1. 启用
# vim /etc/my.cnf
[mysqld]
log-bin[=dir\[filename]]
# service mysqld restart
2. 暂停
//仅当前会话
SET SQL_LOG_BIN=0;
SET SQL_LOG_BIN=1;
3. 查看
查看全部:
# mysqlbinlog mysql.000002
按时间:
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"
# mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 按字节数:
# mysqlbinlog mysql.000002 --start-position=260
# mysqlbinlog mysql.000002 --stop-position=260
# mysqlbinlog mysql.000002 --start-position=260 --stop-position=930
4. 截断bin-log(产生新的bin-log文件)
a. 重启mysql服务器
b. # mysql -uroot -p123 -e 'flush logs'
5. 删除bin-log文件
# mysql -uroot -p123 -e 'reset master' 二、查询日志
启用通用查询日志
# vim /etc/my.cnf
[mysqld]
log[=dir\[filename]]
# service mysqld restart 三、慢查询日志
启用慢查询日志
# vim /etc/my.cnf
[mysqld]
log-slow-queries[=dir\[filename]]
long_query_time=n
# service mysqld restart
MySQL 5.6:
slow-query-log=1
slow-query-log-file=slow.log
long_query_time=3
查看慢查询日志
测试:BENCHMARK(count,expr)
SELECT BENCHMARK(50000000,2*3);

日志管理

mysql:索引原理与慢查询优化的更多相关文章

  1. MySQL索引原理及慢查询优化-来自美团网的技术blog(写的深入浅出)

    MySQL索引原理及慢查询优化 转:http://tech.meituan.com/mysql-index.html MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首 ...

  2. day--41 mysql索引原理与慢查询优化

    mysql索引原理与慢查询优化一:什么是索引 01:索引的出现是为了提高查询数据的效率 02:索引在mysql叫做“键” 或则“key“(primary key,uniquekey ,还有一个inde ...

  3. python 3 mysql 索引原理与慢查询优化

    python 3 mysql 索引原理与慢查询优化 一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最 ...

  4. MySQL 索引原理以及慢查询优化

    本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree ...

  5. MySQL索引原理及慢查询优化

    原文:http://tech.meituan.com/mysql-index.html 一个慢查询引发的思考 select count(*) from task where status=2 and ...

  6. (转)MySQL索引原理及慢查询优化

    转自美团技术博客,原文地址:http://tech.meituan.com/mysql-index.html 建索引的一些原则: 1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到 ...

  7. MySQL索引原理及慢查询优化 转载

    原文地址: http://tech.meituan.com/mysql-index.html MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能 ...

  8. MySQL索引原理及慢查询优化(转)

    add by zhj:这是美团点评技术团队的一篇文章,讲的挺不错的. 原文:http://tech.meituan.com/mysql-index.html MySQL凭借着出色的性能.低廉的成本.丰 ...

  9. 【转载】MySQL索引原理及慢查询优化

    原文链接:美团点评技术团队:http://tech.meituan.com/mysql-index.html MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型 ...

  10. MySQL索引原理与慢查询优化

    索引目的 索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql.如果没有索引,那么你可能需要把所有单词看一遍才 ...

随机推荐

  1. 算法笔记_195:历届试题 错误票据(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 某涉密单位下发了某种票据,并要在年终全部收回. 每张票据有唯一的ID号.全年所有票据的ID号是连续的,但ID的开始数码是随机选定的. 因为 ...

  2. 算法笔记_174:历届试题 地宫取宝(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明 ...

  3. PHPCMS详细文件目录结构

    PHPCMS详细文件目录结构 根目录 |  –  api  接口文件目录 |  –  caches 缓存文件目录 |  – configs 系统配置文件目录 |  – caches_* 系统缓存目录 ...

  4. 〖Linux〗clang3.4的编译与安装

    1. 编译与安装clang3.4 sudo apt-get install -y g++ subversion cmake cd ~ mkdir Clang && cd Clang s ...

  5. java中的 public protected friendly private

    1.public:public表明该数据成员.成员函数是对所有用户开放的,所有用户都可以直接进行调用 2.private:private表示私有,私有的意思就是除了class自己之外,任何人都不可以直 ...

  6. flume的memeryChannel中transactionCapacity和sink的batchsize需要注意事项

    一. fluem中出现,transactionCapacity查询一下,得出一下这些: 最近在做flume的实时日志收集,用flume默认的配置后,发现不是完全实时的,于是看了一下,原来是memery ...

  7. 二分查找法的C++泛型实现

    算法非常easy,直接贴代码啦 #include <iostream> using namespace std; template<typename T> int binary ...

  8. web.config配置数据库连接(转)

    摘自:http://www.cnblogs.com/breezeblew/archive/2008/05/01/1178719.html 第一种: 取连接字符串 string connString = ...

  9. 浅谈软件配置管理工具(github & SVN)

    1   配置管理名词定义 1.1 配置项 软件生存周期各个阶段活动的产物经审批后即可称之为软件配置项. 软件配置项包括: ①与合同.过程.计划和产品有关的文档和资料: ②源代码.目标代码和可执行代码: ...

  10. PowerDesigner 的常用方法

    http://www.cnblogs.com/studyzy/archive/2008/01/23/1050194.html PowerDesigner 的常用方法 修改外键命名规则 选择Databa ...