Dead Fraction
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 3478   Accepted: 1162

Description

Mike is frantically scrambling to finish his thesis at the last minute. He needs to assemble all his research notes into vaguely coherent form in the next 3 days. Unfortunately, he notices that he had been extremely sloppy in his calculations. Whenever he needed to perform arithmetic, he just plugged it into a calculator and scribbled down as much of the answer as he felt was relevant. Whenever a repeating fraction was displayed, Mike simply reccorded the first few digits followed by "...". For instance, instead of "1/3" he might have written down "0.3333...". Unfortunately, his results require exact fractions! He doesn't have time to redo every calculation, so he needs you to write a program (and FAST!) to automatically deduce the original fractions. 
To make this tenable, he assumes that the original fraction is always the simplest one that produces the given sequence of digits; by simplest, he means the the one with smallest denominator. Also, he assumes that he did not neglect to write down important digits; no digit from the repeating portion of the decimal expansion was left unrecorded (even if this repeating portion was all zeroes).

Input

There are several test cases. For each test case there is one line of input of the form "0.dddd..." where dddd is a string of 1 to 9 digits, not all zero. A line containing 0 follows the last case.

Output

For each case, output the original fraction.

Sample Input

0.2...
0.20...
0.474612399...
0

Sample Output

2/9
1/5
1186531/2500000

Hint

Note that an exact decimal fraction has two repeating expansions (e.g. 1/5 = 0.2000... = 0.19999...).

Source

 
 题意:将一个无限循环小数化作分数
  这道题并没有告诉循环节是多少,并且让求分母最小的,所以暴力每个循环节
 #include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
const int MAXN = ;
const int INF = 0x3f3f3f3f;
char s[MAXN];
//欧几里得求最大公因数
int gcd(int x, int y)
{
if (x<y) swap(x, y);
return y == ? x : gcd(y, x%y);
}
//快速幂
int q_pow(int a, int b)
{
int r = , base = a;
while (b)
{
if (b & ) r *= base;
base *= base;
b >>= ;
}
return r;
}
int main(void)
{
while (scanf("%s", s) != EOF && strcmp(s, ""))
{
int all = , cnt1 = ;
int len = strlen(s);
for (int i = ; i<len - ; i++, cnt1++)
all = all * + s[i] - '';
//all为 非循环节和循环节连起来的数
int mina = INF, minb = INF; //所求的分子与分母
for (int num = all / , cnt2 = cnt1 - ; cnt2 >= ; num /= , cnt2--)
{
//num为非循环节部分连起来的数 ,a为当前循环节下的分子,b为当前循环节下的分母
int a = all - num, b = q_pow(, cnt2)*(q_pow(, cnt1 - cnt2) - );
int g = gcd(a, b);
//求出分母最小的
if (b / g<minb)
{
minb = b / g;
mina = a / g;
}
}
printf("%d/%d\n", mina, minb);
}
return ;
}
 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <cmath>
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long ll;
int gcd(int n,int m)//求最大公约数
{
if(m==) return n; //n%m==0(n与m的余数为0)
return gcd(m,n%m);(n是大数,m是小数)
}
int main()
{
int all,num,l,m,n,a,b,k,mis,mns;
char str[];
while(gets(str)&&strcmp(str,""))
{
l=;all=;mis=INF;
for(int i=;str[i]!='.';i++)
{
all=all*+str[i]-;
l++;
}
num=all;
for(int j=;j<=l;j++)
{
num=num/;
a=all-num;
b=(int)pow(,l-j)*(pow(,j)-);
k=gcd(b,a);
if(b/k<mis)
{
mns=a/k;
mis=b/k;
}
}
printf("%d/%d\n",mns,mis);
}
return ;
}

poj 1930 Dead Fraction(循环小数化分数)的更多相关文章

  1. POJ 1930 Dead Fraction (循环小数-GCD)

    题意:给你一个循环小数,化成分数,要求分数的分母最小. 思路:暴力搜一遍循环节 把循环小数化分数步骤: 纯循环小数化分数 纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位 ...

  2. POJ 1930 Dead Fraction

    POJ 1930 Dead Rraction 此题是一个将无限循环小数转化为分数的题目 对于一个数 x=0.abcdefdef.... 假设其不循环部分的长度为m(如abc的长度为m),循环节的长度为 ...

  3. poj1930 Dead Fraction

    思路: 循环小数化分数,枚举所有可能的循环节,取分母最小的那个. 实现: #include <iostream> #include <cstdio> #include < ...

  4. UVA 10555 - Dead Fraction(数论+无限循环小数)

    UVA 10555 - Dead Fraction 题目链接 题意:给定一个循环小数,不确定循环节,求出该小数用分数表示,而且分母最小的情况 思路:推个小公式 一个小数0.aaaaabbb... 表示 ...

  5. HDU1717小数化分数2

    小数化分数2 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  6. POJ 1930

    Dead Fraction Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1762   Accepted: 568 Desc ...

  7. uva 10555 - Dead Fraction)(数论)

    option=com_onlinejudge&Itemid=8&category=516&page=show_problem&problem=1496" st ...

  8. 【HDU】1717 小数化分数2 ——计数原理

    小数化分数2 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  9. HDU 1717 小数化分数2(最大公约数)

    小数化分数2 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

随机推荐

  1. Phpstorm Alt+Enter 自动导入类

    很方便!!!能够自动提示哪些类没有自动加载!!!然后Alt+Enter进行安装!!!

  2. JavaScript之搜索框

    啧啧啧,又到月末了,时间过的真的好快啊︿( ̄︶ ̄)︿现在没课上,天天宅在寝室就这么三件事:吃饭睡觉打豆豆.真感无所事事,无聊至极!突然好怀念那些上课的日子啊!至少不像现在,生活状态全部都搅乱了:以前可 ...

  3. Linux常用命令--文件操作、权限设置

    1.编辑文件 cat aaa.txt 查看aaa.txt文件的内容 head - aaa.txt 查看aaa.txt文件前5行的内容 tail - aaa.txt 展示aaa.txt文件最后10行的内 ...

  4. jquery.validate验证表单

    添加引用 <script src="/${appName}/commons/js/validate/jquery.validate.min.js"></scrip ...

  5. hdu 1385 floyd字典序

    Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/O ...

  6. UVA-140 Bandwidth (回溯+剪枝)

    题目大意:求一个使带宽最小的排列和最小带宽.带宽是指一个字母到其相邻字母的距离最大值. 题目分析:在递归生成全排列的过程中剪枝,剪枝方案还是两个.一.当前解不如最优解优时,减去:二.预测的理想解不必最 ...

  7. plsql安装图解

    Plsqldev安装步骤

  8. 057——VUE中vue-router之路由参数默认值的设置

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. iOS多线程GCD详解

    在这之前,一直有个疑问就是:gcd的系统管理多线程的概念,如果你看到gcd管理多线程你肯定也有这样的疑问,就是:并发队列怎么回事,即是队列(先进先出)怎么会并发,本人郁闷了好久,才发现其实cgd管理多 ...

  10. Sublime 中文标题乱码

    ---title:Sublime 中文标题乱码--- #markdown语法(非Github Flavored) #解决办法: 在用户设置里添加一项,强制不根据 dpi 缩放dpi_scale: 1. ...