poj 1930 Dead Fraction(循环小数化分数)
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 3478 | Accepted: 1162 |
Description
To make this tenable, he assumes that the original fraction is always the simplest one that produces the given sequence of digits; by simplest, he means the the one with smallest denominator. Also, he assumes that he did not neglect to write down important digits; no digit from the repeating portion of the decimal expansion was left unrecorded (even if this repeating portion was all zeroes).
Input
Output
Sample Input
0.2...
0.20...
0.474612399...
0
Sample Output
2/9
1/5
1186531/2500000
Hint
Source
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
const int MAXN = ;
const int INF = 0x3f3f3f3f;
char s[MAXN];
//欧几里得求最大公因数
int gcd(int x, int y)
{
if (x<y) swap(x, y);
return y == ? x : gcd(y, x%y);
}
//快速幂
int q_pow(int a, int b)
{
int r = , base = a;
while (b)
{
if (b & ) r *= base;
base *= base;
b >>= ;
}
return r;
}
int main(void)
{
while (scanf("%s", s) != EOF && strcmp(s, ""))
{
int all = , cnt1 = ;
int len = strlen(s);
for (int i = ; i<len - ; i++, cnt1++)
all = all * + s[i] - '';
//all为 非循环节和循环节连起来的数
int mina = INF, minb = INF; //所求的分子与分母
for (int num = all / , cnt2 = cnt1 - ; cnt2 >= ; num /= , cnt2--)
{
//num为非循环节部分连起来的数 ,a为当前循环节下的分子,b为当前循环节下的分母
int a = all - num, b = q_pow(, cnt2)*(q_pow(, cnt1 - cnt2) - );
int g = gcd(a, b);
//求出分母最小的
if (b / g<minb)
{
minb = b / g;
mina = a / g;
}
}
printf("%d/%d\n", mina, minb);
}
return ;
}
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <cmath>
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long ll;
int gcd(int n,int m)//求最大公约数
{
if(m==) return n; //n%m==0(n与m的余数为0)
return gcd(m,n%m);(n是大数,m是小数)
}
int main()
{
int all,num,l,m,n,a,b,k,mis,mns;
char str[];
while(gets(str)&&strcmp(str,""))
{
l=;all=;mis=INF;
for(int i=;str[i]!='.';i++)
{
all=all*+str[i]-;
l++;
}
num=all;
for(int j=;j<=l;j++)
{
num=num/;
a=all-num;
b=(int)pow(,l-j)*(pow(,j)-);
k=gcd(b,a);
if(b/k<mis)
{
mns=a/k;
mis=b/k;
}
}
printf("%d/%d\n",mns,mis);
}
return ;
}
poj 1930 Dead Fraction(循环小数化分数)的更多相关文章
- POJ 1930 Dead Fraction (循环小数-GCD)
题意:给你一个循环小数,化成分数,要求分数的分母最小. 思路:暴力搜一遍循环节 把循环小数化分数步骤: 纯循环小数化分数 纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位 ...
- POJ 1930 Dead Fraction
POJ 1930 Dead Rraction 此题是一个将无限循环小数转化为分数的题目 对于一个数 x=0.abcdefdef.... 假设其不循环部分的长度为m(如abc的长度为m),循环节的长度为 ...
- poj1930 Dead Fraction
思路: 循环小数化分数,枚举所有可能的循环节,取分母最小的那个. 实现: #include <iostream> #include <cstdio> #include < ...
- UVA 10555 - Dead Fraction(数论+无限循环小数)
UVA 10555 - Dead Fraction 题目链接 题意:给定一个循环小数,不确定循环节,求出该小数用分数表示,而且分母最小的情况 思路:推个小公式 一个小数0.aaaaabbb... 表示 ...
- HDU1717小数化分数2
小数化分数2 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- POJ 1930
Dead Fraction Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1762 Accepted: 568 Desc ...
- uva 10555 - Dead Fraction)(数论)
option=com_onlinejudge&Itemid=8&category=516&page=show_problem&problem=1496" st ...
- 【HDU】1717 小数化分数2 ——计数原理
小数化分数2 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- HDU 1717 小数化分数2(最大公约数)
小数化分数2 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
随机推荐
- UVa 11489 整数游戏
https://vjudge.net/problem/UVA-11489 题意: 给出一个数字串n,两个人轮流从中取出一个数字,要求每次取完之后剩下的数是3的倍数,不能取数者输. 思路: 要想取掉一个 ...
- Codeforces Round #275 (Div. 2) A,B,C,D
A. Counterexample time limit per test 1 second memory limit per test 256 megabytes input standard in ...
- python 执行字符串中的python代码
mycode = 'print("hello world")' code = """ def mutiply(x,y): return x*y pri ...
- SpringBoot创建多模块方式以及打包方式
springboot重构多模块的步骤 模型层:model 持久层:persistence 表示层:web 步骤: 正常创建一个springboot项目 修改创建项目的pom文件,将jar修改为pom ...
- Rails 5 Test Prescriptions 第14章 Testing Exteranl Services(中断。)
external testing strategy ✅ the service integration test✅ introduce VCR✅ Client Unit Tests ❌ Why an ...
- linux下给cpu加压
计算pi: time (echo "scale=500;4*a(1)"|bc -l -q) #!/bin/bashfor i in `seq 1 1000`do (time ...
- 2016 CCPC Hangzhou Onsite
A:题意:n个格子排成一排,每个a[i],要求重排成k个,每个人数相同,合并两个和划分成两个(可以不等)都是花费为1,问最小花费 题解:从前往后贪心即可,由于哪个地方忘开ll,wa了,全改成ll就过了 ...
- 控制反转(IOC)模式
控制反转(Inversion of Control):提倡实现松耦合层.组件和类的设计原则,颠倒程序的控制流程.IoC使用分离执行特定问题处理代码的概念: IoC意味着将你设计好的对象交给容器控制,而 ...
- 谈一谈手机WebApp的fixed属性(手机上的固定栏)【转】
1.iphone/android原生app常见结构 似乎,所有的手机应用,都遵循这样的布局:固定的顶部+固定的底部+可滚动在中间区域.这种“雷同”的模式让人恶心,却不得不承认这是一种很规矩却又很实用的 ...
- 【转】Javascript中的this
作者: 阮一峰 日期: 2010年4月30日 this是Javascript语言的一个关键字. 它代表函数运行时,自动生成的一个内部对象,只能在函数内部使用.比如, function test(){ ...