容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置。

于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解。

显然可以用扩展欧几里得求出。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... LL mult_mod(LL a, LL b, LL c){
a%=c; b%=c;
LL ret=, tmp=a;
while (b){
if (b&) {
ret+=tmp;
if (ret>c) ret-=c;
}
tmp<<=;
if (tmp>c) tmp-=c;
b>>=;
}
return ret;
}
LL pow_mod(LL a, LL n, LL mod){
LL ret=, temp=a%mod;
while (n) {
if (n&) ret=mult_mod(ret,temp,mod);
temp=mult_mod(temp,temp,mod);
n>>=;
}
return ret;
}
LL extend_gcd(LL a, LL b, LL &x, LL &y){
if (a==&&b==) return -;
if (b==) {x=; y=; return a;}
LL d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main ()
{
LL n, m, l, a, b, d, x, y, mod;
scanf("%lld%lld%lld",&n,&m,&l);
a=pow_mod(,m,n+); b=n+;
d=extend_gcd(a,b,x,y); x=x*l/d; mod=b/d;
x=(x%mod+mod)%mod;
printf("%lld\n",x);
return ;
}

BZOJ 1965 洗牌(扩展欧几里得)的更多相关文章

  1. [BZOJ1965][AHOI2005] 洗牌 - 扩展欧几里得

    题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打 ...

  2. BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)

    同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...

  3. 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)

    P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...

  4. bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】

    第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream ...

  5. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  6. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

  7. UVA 10090 Marbles 扩展欧几里得

    来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...

  8. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  9. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

随机推荐

  1. logstash patterns github

    USERNAME [a-zA-Z0-9._-]+ USER %{USERNAME} INT (?:[+-]?(?:[0-9]+)) BASE10NUM (?<![0-9.+-])(?>[+ ...

  2. 在SQL SERVER中批量替换字符串的方法

    UPDATE MainData SET Content = )) , 'XM00000137' , 'XM00000078') WHERE [Key] IN (SELECT md_key FROM i ...

  3. 那些不能遗忘的知识点回顾——C/C++系列(笔试面试高频题)

    有那么一些零碎的小知识点,偶尔很迷惑,偶尔被忽略,偶然却发现它们很重要,这段时间正好在温习这些,就整理在这里,一起学习一起提高!后面还会继续补充. ——前言 1.面向对象的特性 封装.继承.多态. 封 ...

  4. 【JUC源码解析】FutureTask

    简介 FutureTask, 一个支持取消行为的异步任务执行器. 概述 FutureTask实现了Future,提供了start, cancel, query等功能,并且实现了Runnable接口,可 ...

  5. CentOS7安装及配置vsftpd (FTP服务器)

    CentOS7安装及配置vsftpd (FTP服务器) 1.安装vsftpd 1 yum -y install vsftpd 2.设置开机启动 1 systemctl enable vsftpd 3. ...

  6. Java EE JSP内置对象及表达式语言

    一.JSP内置对象 JSP根据Servlet API规范提供了一些内置对象,开发者不用事先声明就可使用标准变量来访问这些对象. JSP提供了9种内置对象: (一).request 简述: JSP编程中 ...

  7. 一个简单的rest_framework demo

    models.py from django.db import models class UserInfo(models.Model): username = models.CharField(max ...

  8. 探路者 Alpha阶段中间产物

     版本控制 git地址:https://git.coding.net/clairewyd/toReadSnake.git   贪吃蛇(单词版)软件功能说明书 1 开发背景 “贪吃蛇”这个游戏对于80, ...

  9. Python:元组操作总结

    Python的元组和列表类似,不同之处在于元组中的元素不能修改(因此元组又称为只读列表),且元组使用小括号而列表使用中括号,如下: tup1=('physics','chemistry',1997,2 ...

  10. Codeforces Round #287 (Div. 2) E. Breaking Good 最短路

    题目链接: http://codeforces.com/problemset/problem/507/E E. Breaking Good time limit per test2 secondsme ...