BZOJ3591 最长上升子序列(状压dp)
之前听说过一种dp套dp的trick,大致是用另一个dp过程中用到的一些东西作为该dp的状态。这个题比较类似。
考虑求LIS时用到的单调队列。设f[S]为所选取集合为S的方案数,其中在单调队列内的标2不在的标1。转移时考虑选择一个数是否合法,这只需要保证LIS长度不超过k且所给数的相对顺序不变。
注意dp顺序,从小到大先枚举选了哪些数再枚举哪些在单调队列里。以及注意卡常。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 15
int n,m,id[N],p[N+],f[];
bool flag[<<N][N];
int v[<<N][N],c[<<N],mx[<<N],s[<<N],ans=;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3591.in","r",stdin);
freopen("bzoj3591.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=m;i++) id[read()-]=i;
p[]=;for (int i=;i<=n;i++) p[i]=p[i-]*;
for (int i=;i<(<<n);i++)
for (int j=;j<n;j++)
if (!(i&(<<j)))
{
if (!id[j]) flag[i][j]=;
else
{
int tot=;
for (int k=;k<n;k++)
if ((i&(<<k))) tot+=(id[k]>);
if (tot+==id[j]) flag[i][j]=;
}
int t=-,x=;
for (int k=;k<n;k++)
if (i&(<<k)) x+=p[k];
for (int k=n-;k>j;k--)
if (i&(<<k)) t=k;
if (~t) v[i][j]=x-p[t]+p[j];
else v[i][j]=x+p[j];
}
else c[i]+=p[j],mx[i]=max(mx[i],j),s[i]++;
f[]=;
for (int x=;x<(<<n);x++)
for (int y=x;y>||y==&&x==;x==?y--:y=y-&x)
if (f[c[x]+c[y]])
{
int i=c[x]+c[y],z=c[x];
for (int j=;s[y]==m?j<mx[y]:j<n;j++)
if (flag[x][j]) f[z+p[j]+v[y][j]]+=f[i];
if (x==(<<n)-) ans+=f[i];
}
cout<<ans;
return ;
}
BZOJ3591 最长上升子序列(状压dp)的更多相关文章
- 【bzoj5161】最长上升子序列 状压dp+打表
题目描述 现在有一个长度为n的随机排列,求它的最长上升子序列长度的期望. 为了避免精度误差,你只需要输出答案模998244353的余数. 输入 输入只包含一个正整数n.N<=28 输出 输出只包 ...
- BZOJ.3591.最长上升子序列(状压DP)
BZOJ 题意:给出\(1\sim n\)的一个排列的一个最长上升子序列,求原排列可能的种类数. \(n\leq 15\). \(n\)很小,参照HDU 4352这道题,我们直接把求\(LIS\)时的 ...
- bzoj5161 最长上升子序列 状压DP(DP 套 DP) + 打表
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5161 题解 回顾一下以前用二分求 LIS 的方法:令 \(f[i]\) 表示长度为 \(i\) ...
- BZOJ 5161: 最长上升子序列 状压dp+查分
好神啊 ~ 打表程序: #include <cstdio> #include <cstring> #include <algorithm> #define N 14 ...
- 洛谷 P4484 - [BJWC2018]最长上升子序列(状压 dp+打表)
洛谷题面传送门 首先看到 LIS 我们可以想到它的 \(\infty\) 种求法(bushi),但是对于此题而言,既然题目出这样一个数据范围,硬要暴搜过去也不太现实,因此我们需想到用某种奇奇怪怪的方式 ...
- 【dp 状态压缩 单调栈】bzoj3591: 最长上升子序列
奇妙的单调栈状压dp Description 给出1~n的一个排列的一个最长上升子序列,求原排列可能的种类数. Input 第一行一个整数n. 第二行一个整数k,表示最长上升子序列的长度. 第三行k个 ...
- hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)
传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...
- hdu4352-XHXJ's LIS状压DP+数位DP
(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 题意:传送门 原题目描述在最下面. 在区间内把整数看成一个阿拉伯数字的集合,此集合中最长严格上升子序列的长度为k的个数. 思路: ...
- 「算法笔记」状压 DP
一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...
- fzu2188 状压dp
G - Simple String Problem Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & ...
随机推荐
- HBase——使用Put迁移MySql数据到Hbase
先上code: /** * 功能:迁移mysql上电池历史数据到hbase * Created by liuhuichao on 2016/12/6. */ public class MySqlToH ...
- 【JUC源码解析】ReentrantReadWriteLock
简介 ReentrantReadWriteLock, 可重入读写锁,包括公平锁和非公平锁,相比较公平锁而言,非公平锁有更好的吞吐量,但可能会出现队列里的线程无限期地推迟一个或多个读线程或写线程的情况, ...
- js文件上传库
收集了2个与具体UI库和框架无任何耦合的JS文件上传库:支持断点续传.支持npm安装. resumable.js fileapi
- 准备正式开始学习C++,先发点牢骚
由于职业关系,经常使用AutoCAD之类绘图软件,但这些软件平台的功能,对专业的应用细节来说,并不能全都照顾到,需要一些二次开发,提升一些个性化操作的效率.软件本身也大多提供了开发软件包,AutoCA ...
- WebGL射线拾取模型——八叉树优化
经过前面2篇WebGL射线拾取模型的文章,相信大家对射线和模型面片相交的原理已经有所了解,那么今天我们再深入探究关于射线拾取的一个问题,那就是遍历场景中的所有与射线相交的模型的优化问题.首先我们来复习 ...
- Scala基础知识笔记2
1 类 1.1 定义一个简单的类 1.2 field的getter 和 setter方法 感觉成员变量定义成 var 属性名=属性值即可, 不需要定义成 val 或者 private就行, // ...
- 优先队列(堆) -数据结构(C语言实现)
数据结构与算法分析 优先队列 模型 Insert(插入) == Enqueue(入队) DeleteMin(删除最小者) == Dequeue(出队) 基本实现 简单链表:在表头插入,并遍历该链表以删 ...
- linux下各文件夹的结构说明及用途介绍(转载)
详细介绍文档 转载文章路径 /bin:二进制可执行命令. /dev:设备特殊文件. /etc:系统管理和配置文件. /etc/rc.d:启动的配 置文件和脚本. /home:用户主目录的基点,比如用户 ...
- [转]Zookeeper系列(一)
一.ZooKeeper的背景 1.1 认识ZooKeeper ZooKeeper---译名为“动物园管理员”.动物园里当然有好多的动物,游客可以根据动物园提供的向导图到不同的场馆观赏各种类型的动物,而 ...
- WeakHashMap介绍
WeakHashMap简介 WeakHashMap 继承于AbstractMap,实现了Map接口. 和HashMap一样,WeakHashMap 也是一个散列表,它存储的内容也是键值对(key ...