BZOJ3591 最长上升子序列(状压dp)
之前听说过一种dp套dp的trick,大致是用另一个dp过程中用到的一些东西作为该dp的状态。这个题比较类似。
考虑求LIS时用到的单调队列。设f[S]为所选取集合为S的方案数,其中在单调队列内的标2不在的标1。转移时考虑选择一个数是否合法,这只需要保证LIS长度不超过k且所给数的相对顺序不变。
注意dp顺序,从小到大先枚举选了哪些数再枚举哪些在单调队列里。以及注意卡常。
- #include<iostream>
- #include<cstdio>
- #include<cmath>
- #include<cstdlib>
- #include<cstring>
- #include<algorithm>
- using namespace std;
- int read()
- {
- int x=,f=;char c=getchar();
- while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
- while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
- return x*f;
- }
- #define N 15
- int n,m,id[N],p[N+],f[];
- bool flag[<<N][N];
- int v[<<N][N],c[<<N],mx[<<N],s[<<N],ans=;
- int main()
- {
- #ifndef ONLINE_JUDGE
- freopen("bzoj3591.in","r",stdin);
- freopen("bzoj3591.out","w",stdout);
- const char LL[]="%I64d\n";
- #else
- const char LL[]="%lld\n";
- #endif
- n=read(),m=read();
- for (int i=;i<=m;i++) id[read()-]=i;
- p[]=;for (int i=;i<=n;i++) p[i]=p[i-]*;
- for (int i=;i<(<<n);i++)
- for (int j=;j<n;j++)
- if (!(i&(<<j)))
- {
- if (!id[j]) flag[i][j]=;
- else
- {
- int tot=;
- for (int k=;k<n;k++)
- if ((i&(<<k))) tot+=(id[k]>);
- if (tot+==id[j]) flag[i][j]=;
- }
- int t=-,x=;
- for (int k=;k<n;k++)
- if (i&(<<k)) x+=p[k];
- for (int k=n-;k>j;k--)
- if (i&(<<k)) t=k;
- if (~t) v[i][j]=x-p[t]+p[j];
- else v[i][j]=x+p[j];
- }
- else c[i]+=p[j],mx[i]=max(mx[i],j),s[i]++;
- f[]=;
- for (int x=;x<(<<n);x++)
- for (int y=x;y>||y==&&x==;x==?y--:y=y-&x)
- if (f[c[x]+c[y]])
- {
- int i=c[x]+c[y],z=c[x];
- for (int j=;s[y]==m?j<mx[y]:j<n;j++)
- if (flag[x][j]) f[z+p[j]+v[y][j]]+=f[i];
- if (x==(<<n)-) ans+=f[i];
- }
- cout<<ans;
- return ;
- }
BZOJ3591 最长上升子序列(状压dp)的更多相关文章
- 【bzoj5161】最长上升子序列 状压dp+打表
题目描述 现在有一个长度为n的随机排列,求它的最长上升子序列长度的期望. 为了避免精度误差,你只需要输出答案模998244353的余数. 输入 输入只包含一个正整数n.N<=28 输出 输出只包 ...
- BZOJ.3591.最长上升子序列(状压DP)
BZOJ 题意:给出\(1\sim n\)的一个排列的一个最长上升子序列,求原排列可能的种类数. \(n\leq 15\). \(n\)很小,参照HDU 4352这道题,我们直接把求\(LIS\)时的 ...
- bzoj5161 最长上升子序列 状压DP(DP 套 DP) + 打表
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5161 题解 回顾一下以前用二分求 LIS 的方法:令 \(f[i]\) 表示长度为 \(i\) ...
- BZOJ 5161: 最长上升子序列 状压dp+查分
好神啊 ~ 打表程序: #include <cstdio> #include <cstring> #include <algorithm> #define N 14 ...
- 洛谷 P4484 - [BJWC2018]最长上升子序列(状压 dp+打表)
洛谷题面传送门 首先看到 LIS 我们可以想到它的 \(\infty\) 种求法(bushi),但是对于此题而言,既然题目出这样一个数据范围,硬要暴搜过去也不太现实,因此我们需想到用某种奇奇怪怪的方式 ...
- 【dp 状态压缩 单调栈】bzoj3591: 最长上升子序列
奇妙的单调栈状压dp Description 给出1~n的一个排列的一个最长上升子序列,求原排列可能的种类数. Input 第一行一个整数n. 第二行一个整数k,表示最长上升子序列的长度. 第三行k个 ...
- hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)
传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...
- hdu4352-XHXJ's LIS状压DP+数位DP
(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 题意:传送门 原题目描述在最下面. 在区间内把整数看成一个阿拉伯数字的集合,此集合中最长严格上升子序列的长度为k的个数. 思路: ...
- 「算法笔记」状压 DP
一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...
- fzu2188 状压dp
G - Simple String Problem Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & ...
随机推荐
- [agc004D]Teleporter
Description 传送门 Solution 依题意我们可以知道,以2-n为出发点的边和1号节点会构成一课树(不然2-n号节点无法都达到首都). 为了让2-n号节点中,离1号节点的距离<k的 ...
- OpenCV人脸识别-训练级联分类器
OpenCV中以及附带了训练好的人脸特征分类器,3.2版本的有三种: 分别是LBP,Haar,Hug 在Data目录下. 也可以训练自己的特征库,具体参照如下: 级联分类器训练 — OpenCV 2. ...
- httpclient在获取response的entity时报异常
httpClient报异常:Premature end of chunk coded message body: closing chunk expected 首先这个异常提示直译过来就是:被编码信息 ...
- 小计Tomcat的调优思路
描述 最近在补充自己的短板,刚好整理到Tomcat调优这块,基本上面试必问,于是就花了点时间去搜集一下tomcat调优 都调了些什么,先记录一下调优手段,更多详细的原理和实现以后用到时候再来补充记录, ...
- ython进阶06 循环对象
这一讲的主要目的是为了大家在读Python程序的时候对循环对象有一个基本概念. 循环对象的并不是随着Python的诞生就存在的,但它的发展迅速,特别是Python 3x的时代,循环对象正在成为循环的标 ...
- 中国天气网 城市代码 sql语句
mysql的 下载地址:http://download.csdn.net/detail/songzhengdong82/6252651
- OpenLDAP搭建部署
安装环境: linu系统: centos7.2版本 OenLDAP:/openldap-2.4.44 下载地址:ftp://ftp.openldap.org/pub/OpenLDAP/ope ...
- 不相交集合ADT -数据结构(C语言实现)
读数据结构与算法分析 不相交集合 等价关系 满足三个性质 - 自反性 - 对称性 - 传递性 基本数据结构 基本思路 使用一个数组,下标表示该集合,内容表示指向的父亲 实现 类型声明 typedef ...
- 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题
参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...
- python sys模块使用详情
python常用模块目录 sys模块提供了一系列有关Python运行环境的变量和函数.1.sys.argv可以用sys.argv获取当前正在执行的命令行参数的参数列表(list).变量解释sys.ar ...