题目大意:有n个任务,已知做每件任务所需的时间,并且每件任务都对应一个系数fi。现在,要将这n个任务分成若干个连续的组,每分成一个组的代价是完成这组任务所需的总时间加上一个常数S后再乘以这个区间的系数和。求最小代价。

题目分析:分组求最优值得问题。不过,这道题采用倒推可能要好做一些。定义状态dp(i)表示完成从第 i 个任务到第n个任务需要的最小代价,则状态转移方程为

dp(i)=min(dp(j)+(sumt(i)-sumt(j)+s)*sumf(i),很显然的要用斜率优化。

代码如下:

# include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std;
# define LL long long const int INF=1<<30;
const int N=10005; int n,m;
int q[N];
int t[N];
int f[N];
int dp[N]; void read(int &x)
{
char ch=' ';
while(ch<'0'||ch>'9')
ch=getchar();
x=0;
while(ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
} void init()
{
for(int i=0;i<n;++i){
read(t[i]);
read(f[i]);
}
t[n]=f[n]=0;
for(int i=n-1;i>=0;--i){
t[i]+=t[i+1];
f[i]+=f[i+1];
}
} double getK(int i,int j)
{
return (double)(dp[i]-dp[j])/(double)(t[i]-t[j]);
} int toDp(int i,int j)
{
return dp[j]+(t[i]-t[j]+m)*f[i];
} int solve()
{
int head=0,tail=-1;
dp[n]=0;
q[++tail]=n;
for(int i=n-1;i>=0;--i){
while(head+1<=tail&&getK(q[head+1],q[head])<=(double)f[i])
++head;
dp[i]=toDp(i,q[head]);
while(head+1<=tail&&getK(i,q[tail])<=getK(q[tail],q[tail-1]))
--tail;
q[++tail]=i;
}
return dp[0];
} int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
printf("%d\n",solve());
}
return 0;
}

  

POJ-1180 Batch Scheduling (分组求最优值+斜率优化)的更多相关文章

  1. POJ 1180 Batch Scheduling(斜率优化DP)

    [题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...

  2. poj 1180 Batch Scheduling (斜率优化)

    Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...

  3. poj 1180:Batch Scheduling【斜率优化dp】

    我会斜率优化了!这篇讲的超级棒https://blog.csdn.net/shiyongyang/article/details/78299894?readlog 首先列个n方递推,设sf是f的前缀和 ...

  4. POJ 1180 Batch Scheduling

    BTW: 刚在图书馆借了本算法艺术与信息学竞赛. 我多次有买这本书的冲动, 但每次在试看之后就放弃了, 倒不是因为书太难, 而是写的实在是太差. 大家对这本书的评价很高, 我觉得多是因为书的内容, 而 ...

  5. POJ 1180 - Batch Scheduling - [斜率DP]

    题目链接:http://poj.org/problem?id=1180 Description There is a sequence of N jobs to be processed on one ...

  6. POJ 1180 Batch Scheduling (dp,双端队列)

    #include <iostream> using namespace std; + ; int S, N; int T[MAX_N], F[MAX_N]; int sum_F[MAX_N ...

  7. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  8. POJ1180 Batch Scheduling 解题报告(斜率优化)

    题目链接:http://poj.org/problem?id=1180 题目描述: There is a sequence of N jobs to be processed on one machi ...

  9. [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP

    POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...

随机推荐

  1. web前端----jQuery操作标签

    样式操作 样式类 addClass();// 添加指定的CSS类名. removeClass();// 移除指定的CSS类名. hasClass();// 判断样式存不存在 toggleClass() ...

  2. Python Web学习笔记之IGMP和ICMP的差别

    理论技术:TCP/IP协议族(四)ICMP和IGMP协议! 应该先说IP协议的,后来考虑到层次性,还是先把支撑协议介绍完在细说IP!因为IP是我的最爱也是我的痛!呵呵! 一.ICMP协议 为什么要使用 ...

  3. bzoj1652 / P2858 [USACO06FEB]奶牛零食Treats for the Cows

    P2858 [USACO06FEB]奶牛零食Treats for the Cows 区间dp 设$f[l][r]$为取区间$[l,r]$的最优解,蓝后倒着推 $f[l][r]=max(f[l+1][r ...

  4. C++设计模式 之 “单一职责”模式:Decorator、Bridge

    part 1 “单一职责”模式 在软件组件的设计中,如果责任划分的不清晰,使用继承得到的结果往往是随着需求的变化,子类急剧膨胀,同时充斥着重复代码,这时候的关键是划清责任. 典型模式 Decorato ...

  5. 获取GetOpenFileName多选文件名

    void CWriteWnd::OpenFileDialog() { OPENFILENAME ofn; TCHAR szOpenFileNames[*MAX_PATH] = _T("&qu ...

  6. cmd解释

    cmd是command的缩写.即命令提示符(CMD),是在OS / 2 , Windows CE与Windows NT平台为基础的操作系统(包括Windows 2000和XP中, Vista中,和Se ...

  7. LuoguP3183 [HAOI2016]食物链 记忆化搜索

    题目描述 如图所示为某生态系统的食物网示意图,据图回答第1小题现在给你n个物种和m条能量流动关系,求其中的食物链条数.物种的名称为从1到n编号M条能量流动关系形如a1 b1a2 b2a3 b3.... ...

  8. Unity3D学习笔记(二):个体层次、绝对和局部坐标、V3平移旋转

    Directional Light:平行光源/方向性光源,用来模拟太阳光(角度只与旋转角度有关,与位置无关) Point Light:点光源,用来模拟灯泡,向四周发散光源 Spotlight:锥光源/ ...

  9. 01_Spark基础

    1.1.Spark Ecosystem BlinkDB: 允许用户定义一个错误范围,BlinkDB将在用户给定的错误范围内,尽可能快的提供查询结果 1.2.Spark愿景 1.3.Spark简介 1) ...

  10. yunw