Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

The
nation looks like a connected bidirectional graph, and I am randomly
walking on it. It means when I am at node i, I will travel to an
adjacent node with the same probability in the next step. I will pick up
the start node randomly (each node in the graph has the same
probability.), and travel for d steps, noting that I may go through some
nodes multiple times.

If I miss some sights at a node, it will
make me unhappy. So I wonder for each node, what is the probability that
my path doesn't contain it.

 
Input
The first line contains an integer T, denoting the number of the test cases.

For
each test case, the first line contains 3 integers n, m and d, denoting
the number of vertices, the number of edges and the number of steps
respectively. Then m lines follows, each containing two integers a and
b, denoting there is an edge between node a and node b.

T<=20,
n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no
self-loops or multiple edges in the graph, and the graph is connected.
The nodes are indexed from 1.

 
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

Your answer will be accepted if its absolute error doesn't exceed 1e-5.

 
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 
Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
 
题目大意:给一张无根无向图(n个节点,m条边),每一步走哪一个儿子节点的概率相同(以哪个点为起点的概率也相同)。对于每个点,找出走完d步后走不到该点的概率。
题目分析:定义dp(s,u)表示不经过节点i(1<=i<=n)走了s步时,到达u点的概率。则根据加法原理,dp(s,son)=sum(dp(s-1,u)*f),其中 f 是u走到其儿子son的概率,f=1.0/(u的儿子个数)。题目要求分别输出不经过节点 i (1<=i<=n) 的答案,则DP n次即可。对于每次DP,根据加法原理,答案为ans=sum(dp(d,j)),其中,j不等于i。
 
注意:第一步是从起点开始的,而选择起点的过程不能算做一步。
 
代码如下:
# include<iostream>
# include<cstdio>
# include<vector>
# include<cstring>
# include<algorithm>
using namespace std;
vector<int>v[55];
int n,m,d,vis[10005][55];
double dp[10005][55];
void solve()
{
for(int i=1;i<=n;++i){
memset(dp,0,sizeof(dp));
for(int j=1;j<=n;++j)
dp[0][j]=1.0/n;
for(int j=1;j<=d;++j){
for(int start=1;start<=n;++start){
if(i==start)
continue;
int l=v[start].size();
for(int k=0;k<l;++k)
dp[j][v[start][k]]+=dp[j-1][start]*1.0/l;
}
}
double ans=0.0;
for(int j=1;j<=n;++j)
if(j!=i)
ans+=dp[d][j];
printf("%.10lf\n",ans);
}
}
int main()
{
int T,a,b;
vector<int>::iterator it;
scanf("%d",&T);
while(T--)
{
memset(vis,0,sizeof(vis));
scanf("%d%d%d",&n,&m,&d);
for(int i=1;i<=n;++i)
v[i].clear();
while(m--)
{
scanf("%d%d",&a,&b);
it=find(v[a].begin(),v[a].end(),b);
if(it==v[a].end())
v[a].push_back(b);
it=find(v[b].begin(),v[b].end(),a);
if(it==v[b].end())
v[b].push_back(a);
}
solve();
}
return 0;
}

  

HDU-5001 Walk (概率DP)的更多相关文章

  1. Hdu 5001 Walk 概率dp

    Walk Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5001 Desc ...

  2. HDU - 5001 Walk(概率dp+记忆化搜索)

    Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...

  3. HDU 3853LOOPS(简单概率DP)

    HDU 3853    LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...

  4. HDU - 1099 - Lottery - 概率dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...

  5. HDU 4405 【概率dp】

    题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...

  6. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

  7. HDU 5001 Walk

    解题思路:这是一道简单的概率dp,只要处理好相关的细节就可以了. dp[d][i]表示走d步时走到i的改概率,具体参考代码: #include<cstdio> #include<cs ...

  8. HDU 4599 Dice (概率DP+数学+快速幂)

    题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...

  9. [HDU 4089]Activation[概率DP]

    题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...

  10. hdu 3853 LOOPS 概率DP

    简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

随机推荐

  1. 用crontab执行shell把top命令按日期追加到文件

    用crontab执行shell把top命令按日期追加到文件 详细图文解说请到本人原创百度经验http://jingyan.baidu.com/article/3052f5a1daf11197f21f8 ...

  2. php 截取字符串第一个字符,截取掉字符串最后一个字符的方法

    php 截取字符串第一个字符,php截取掉字符串最后一个字符的方法: $frist = substr( $c_url, 0, 1 ); $delete_last = substr(base_url() ...

  3. web前端----JavaScript的DOM(二)

    前面在DOM一中我们知道了属性操作,下面我们来了解一下节点操作.很重要!! 一.节点操作 创建节点:var ele_a = document.createElement('a');添加节点:ele_p ...

  4. 安装SQL2008时显示:RebootRequiredCheck 检查是否需要挂起计算机重新启动。

    解决方法: a.在开始->运行中输入regeditb.删除HKEY_CURRENT_USER\Software\Microsoft\Microsoft SQL Serverc.删除HKEY_LO ...

  5. P3366 【模板】最小生成树(堆优化prim)

    堆优化prim #include<cstdio> #include<cstring> #include<queue> using namespace std; st ...

  6. c++性能之map实现性能比较

    http://www.cnblogs.com/zhjh256/p/6346501.html讲述了基本的map操作,在测试的时候,发现map的性能极为低下,与java相比相差了接近200倍.测试的逻辑如 ...

  7. ELK之kibana6.5

    ELK之安装kibana6.5,这里采用rpm安装: https://www.elastic.co/guide/en/kibana/current/rpm.html # wget https://ar ...

  8. Python3基础 str find+index 是否存在指定字符串,有则返回第一个索引值

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  9. |和||以及&和&&

    https://msdn.microsoft.com/en-us/library/6a71f45d.aspx Logical OR Operator 按位或 This operator has hig ...

  10. 51NOD 1066 Bash游戏

    1066 Bash游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   有一堆石子共有N个.A B两个人轮流拿,A先拿.每次最少拿1颗,最多拿K颗,拿到最后1颗石子的 ...