边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权。

最小生成树(MST):权值最小的生成树。

生成树和最小生成树的应用:要连通n个城市需要n-1条边线路。可以把边上的权值解释为线路的造价。则最小生成树表示使其造价最小的生成树。

构造网的最小生成树必须解决下面两个问题:

1、尽可能选取权值小的边,但不能构成回路;

2、选取n-1条恰当的边以连通n个顶点;

MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集。若(u,v)是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边(u,v)的最小生成树。

1.prim算法

基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U={u0}(u0∈V)、TE={}开始。重复执行下列操作:

在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。

此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。

Prim算法的核心:始终保持TE中的边集构成一棵生成树。

注意:prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关。

看了上面一大段文字是不是感觉有点晕啊,为了更好理解我在这里举一个例子,示例如下:

(1)图中有6个顶点v1-v6,每条边的边权值都在图上;在进行prim算法时,我先随意选择一个顶点作为起始点,当然我们一般选择v1作为起始点,好,现在我们设U集合为当前所找到最小生成树里面的顶点,TE集合为所找到的边,现在状态如下:

U={v1}; TE={};

(2)现在查找一个顶点在U集合中,另一个顶点在V-U集合中的最小权值,如下图,在红线相交的线上找最小值。

通过图中我们可以看到边v1-v3的权值最小为1,那么将v3加入到U集合,(v1,v3)加入到TE,状态如下:

U={v1,v3}; TE={(v1,v3)};

(3)继续寻找,现在状态为U={v1,v3}; TE={(v1,v3)};在与红线相交的边上查找最小值。

我们可以找到最小的权值为(v3,v6)=4,那么我们将v6加入到U集合,并将最小边加入到TE集合,那么加入后状态如下:

U={v1,v3,v6}; TE={(v1,v3),(v3,v6)}; 如此循环一下直到找到所有顶点为止。

(4)下图像我们展示了全部的查找过程:

克鲁斯卡尔(Kruskal)算法(只与边相关)

算法描述:克鲁斯卡尔算法需要对图的边进行访问,所以克鲁斯卡尔算法的时间复杂度只和边又关系,可以证明其时间复杂度为O(eloge)。

算法过程:

1.将图各边按照权值进行排序

2.将图遍历一次,找出权值最小的边,(条件:此次找出的边不能和已加入最小生成树集合的边构成环),若符合条件,则加入最小生成树的集合中。不符合条件则继续遍历图,寻找下一个最小权值的边。

3.递归重复步骤1,直到找出n-1条边为止(设图有n个结点,则最小生成树的边数应为n-1条),算法结束。得到的就是此图的最小生成树。

克鲁斯卡尔(Kruskal)算法因为只与边相关,则适合求稀疏图的最小生成树。而prime算法因为只与顶点有关,所以适合求稠密图的最小生成树。

而kruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。

算法描述:克鲁斯卡尔算法需要对图的边进行访问,所以克鲁斯卡尔算法的时间复杂度只和边又关系,可以证明其时间复杂度为O(ElogE)。

算法过程:

1.将图各边按照权值进行排序

2.将图遍历一次,找出权值最小的边,(条件:此次找出的边不能和已加入最小生成树集合的边构成环),若符合条件,则加入最小生成树的集合中。不符合条件则继续遍历图,寻找下一个最小权值的边。

3.递归重复步骤1,直到找出n-1条边为止(设图有n个结点,则最小生成树的边数应为n-1条),算法结束。得到的就是此图的最小生成树。判断是否构成环:《算法导论》提供的一种方法是采用一种"不相交集合数据结构",也就是并查集了。核心内容就是如果某两个节点属于同一棵树,那么将它们合并后一定会形成回路。

克鲁斯卡尔(Kruskal)算法因为只与边相关,则适合求稀疏图的最小生成树。而prime算法因为只与顶点有关,所以适合求稠密图的最小生成树。

无向带权图的最小生成树算法——Prim及Kruskal算法思路的更多相关文章

  1. C语言——无向带权图邻接矩阵的建立

    #include <stdio.h> #include "Graph.h" #define MAX_INT 32767 /* #define vnum 20 #defi ...

  2. [数据结构]最小生成树算法Prim和Kruskal算法

    最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树.  例如,对于如上图G4所示的连通网可以有多棵权值总 ...

  3. 【2018寒假集训Day 8】【最小生成树】Prim和Kruskal算法模板

    Luogu最小生成树模板题 Prim 原理与dijkstra几乎相同,每次找最优的点,用这个点去松弛未连接的点,也就是用这个点去与未连接的点连接. #include<cstdio> #in ...

  4. Java数据结构——带权图

    带权图的最小生成树--Prim算法和Kruskal算法 带权图的最短路径算法--Dijkstra算法 package graph; // path.java // demonstrates short ...

  5. java数据结构----带权图

    1.带权图:要引入带权图,首先要引入最小生成树,当所有的边拥有相同的权值时.问题变得简单了,算法可以选择任意一条边加入最小生成树.但是当边有不同的权值时,需要用一些算法决策来选择正确的边. 2.带权图 ...

  6. 带权图的最短路径算法(Dijkstra)实现

    一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...

  7. C++编程练习(10)----“图的最小生成树“(Prim算法、Kruskal算法)

    1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数 ...

  8. 【数据结构】 最小生成树(二)——kruskal算法

    上一期说完了什么是最小生成树,这一期咱们来介绍求最小生成树的算法:kruskal算法,适用于稀疏图,也就是同样个数的节点,边越少就越快,到了数据结构与算法这个阶段了,做题靠的就是速度快,时间复杂度小. ...

  9. 算法起步之Kruskal算法

    原文:算法起步之Kruskal算法 说完并查集我们接着再来看这个算法,趁热打铁嘛.什么是最小生成树呢,很形象的一个形容就是铺自来水管道,一个村庄有很多的农舍,其实这个村庄我们可以看成一个图,而农舍就是 ...

随机推荐

  1. WebService中方法的重载

    阅读目录 一:WebService中的方法是否允许重载? 二:为什么WebService中不支持方法的重载? 三:如何解决WebService中方法的重载? 一:WebService中的方法是否允许重 ...

  2. LeetCode: Palindrome 回文相关题目

    LeetCode: Palindrome 回文相关题目汇总 LeetCode: Palindrome Partitioning 解题报告 LeetCode: Palindrome Partitioni ...

  3. virsh的详细命令解析(一)

    virsh的详细命令解析 virsh 有命令模式和交互模式如果直接在vrish后面添加参数是命令模式,如果直接写virsh,就会进入交互模式 virsh list 列出所有的虚拟机,虚拟机的状态有(8 ...

  4. [转载]CMMI之功能点估算法:EI、EQ和EO

    EI.EO.EQ EI是处理来自于应用程序边界外部的一组数据的输入,它的主要目的是维护一个或多个ILF,以及/或者更改系统的行为. EO是输送数据到应用程序边界外部的过程.它的主要目的是通过逻辑处理过 ...

  5. strcpy和memcpy的区别(转)

    转自:http://www.cnblogs.com/stoneJin/archive/2011/09/16/2179248.html strcpy和memcpy都是标准C库函数,它们有下面的特点.st ...

  6. Kafka、RabbitMQ、RocketMQ消息中间件的对比 —— 消息发送性能

    引言 分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦.现在开源的消息中间件有很多,前段时间我们自家的产品 RocketMQ (MetaQ的内核) 也顺利开源,得到大家的关注. ...

  7. 头文件中ifndef/define/endif的作用以及#pragma once使用

    例如:要编写头文件test.h 在头文件开头写上两行: #ifndef _TEST_H #define _TEST_H//一般是文件名的大写 ············ ············ 头文件 ...

  8. Sahi (3) —— 压力测试Load Test以CAS SSO登陆场景为例(103 Tutorial)

    Sahi (3) -- 压力测试Load Test以CAS SSO登陆场景为例(103 Tutorial) jvm版本: 1.8.0_65 sahi版本: Sahi Pro 6.1.0 参考来源: S ...

  9. Spark算子---实战应用

    Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat --- ...

  10. 协变(covariant)和逆变(contravariant)

    我们知道子类转换到父类,在C#中是能够隐式转换的.这种子类到父类的转换就是协变. 而另外一种类似于父类转向子类的变换,可以简单的理解为“逆变”. 上面对逆变的简单理解有些牵强,因为协变和逆变只能针对接 ...