Perfect Election
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 438   Accepted: 223

Description

In a country (my memory fails to say which), the candidates {1, 2 ..., N} are running in the parliamentary election. An opinion poll asks the question "For any two candidates of your own choice, which election result would make you happy?". The accepted answers are shown in the table below, where the candidates i and j are not necessarily different, i.e. it may happen that i=j. There are M poll answers, some of which may be similar or identical. The problem is to decide whether there can be an election outcome (It may happen that all candidates fail to be elected, or all are elected, or only a part of them are elected. All these are acceptable election outcomes.) that conforms to all M answers. We say that such an election outcome is perfect. The result of the problem is 1 if a perfect election outcome does exist and 0 otherwise.

Input

Each data set corresponds to an instance of the problem and starts with two integral numbers: 1≤N≤1000 and 1≤M≤1000000. The data set continues with M pairs ±i ±j of signed numbers, 1≤i,j≤N. Each pair encodes a poll answer as follows:

Accepted answers to the poll question Encoding
I would be happy if at least one from i and j is elected. +i +j
I would be happy if at least one from i and j is not elected. -i -j
I would be happy if i is elected or j is not elected or both events happen. +i -j
I would be happy if i is not elected or j is elected or both events happen. -i +j

The input data are separated by white spaces, terminate with an end of file, and are correct.

Output

For each data set the program prints the result of the encoded election problem. The result, 1 or 0, is printed on the standard output from the beginning of a line. There must be no empty lines on output.

Sample Input

3 3  +1 +2  -1 +2  -1 -3
2 3 -1 +2 -1 -2 +1 -2
2 4 -1 +2 -1 -2 +1 -2 +1 +2
2 8 +1 +2 +2 +1 +1 -2 +1 -2 -2 +1 -1 +1 -2 -2 +1 -1

Sample Output

1
1
0
1

Hint

For the first data set the result of the problem is 1; there are several perfect election outcomes, e.g. 1 is not elected, 2 is elected, 3 is not elected. The result for the second data set is justified by the perfect election outcome: 1 is not elected, 2 is not elected. The result for the third data set is 0. According to the answers -1 +2 and -1 -2 the candidate 1 must not be elected, whereas the answers +1 -2 and +1 +2 say that candidate 1 must be elected. There is no perfect election outcome. For the fourth data set notice that there are similar or identical poll answers and that some answers mention a single candidate. The result is 1.

Source

大致题意:

    有n个候选人,m组要求,每组要求关系到候选人中的两个人,“+i +j”代表i和j中至少有一人被选中,“-i -j”代表i和j中至少有一人不被选中。“+i -j”代表i被选中和j不被选中这两个事件至少发生一个,“-i +j”代表i不被选中和j被选中这两个事件至少发生一个。问是否存在符合所有m项要求的方案存在。
 
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int VM=;
const int EM=; struct Edge{
int to,nxt;
}edge[EM<<]; int n,m,cnt,dep,top,atype,head[VM];
int dfn[VM],low[VM],vis[VM],belong[VM];
int stack[VM]; void Init(){
cnt=, atype=, dep=, top=;
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(belong,,sizeof(belong));
} void addedge(int cu,int cv){
edge[cnt].to=cv; edge[cnt].nxt=head[cu]; head[cu]=cnt++;
} void Tarjan(int u){
dfn[u]=low[u]=++dep;
stack[top++]=u;
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(vis[v])
low[u]=min(low[u],dfn[v]);
}
int j;
if(dfn[u]==low[u]){
atype++;
do{
j=stack[--top];
belong[j]=atype;
vis[j]=;
}while(u!=j);
}
} int abs(int x){
return x<?-x:x;
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d",&n,&m)){
Init();
int u,v;
for(int i=;i<m;i++){
scanf("%d%d",&u,&v);
int a=abs(u), b=abs(v);
if(u> && v>){
addedge(a+n,b);
addedge(b+n,a);
}
if(u< && v<){
addedge(a,b+n);
addedge(b,a+n);
}
if(u> && v<){
addedge(a+n,b+n);
addedge(b,a);
}
if(u< && v>){
addedge(a,b);
addedge(b+n,a+n);
}
}
for(int i=;i<=*n;i++)
if(!dfn[i])
Tarjan(i);
int ans=;
for(int i=;i<=n;i++)
if(belong[i]==belong[i+n]){
ans=;
break;
}
printf("%d\n",ans);
}
return ;
}

POJ 3905 Perfect Election (2-Sat)的更多相关文章

  1. POJ 3905 Perfect Election(2-sat)

    POJ 3905 Perfect Election id=3905" target="_blank" style="">题目链接 思路:非常裸的 ...

  2. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  3. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  4. POJ 3905 Perfect Election

    2-SAT 裸题,搞之 #include<cstdio> #include<cstring> #include<cmath> #include<stack&g ...

  5. POJ 3905 Perfect Election (2-SAT 判断可行)

    题意:有N个人参加选举,有M个条件,每个条件给出:i和j竞选与否会只要满足二者中的一项即可.问有没有方案使M个条件都满足. 分析:读懂题目即可发现是2-SAT的问题.因为只要每个条件中满足2个中的一个 ...

  6. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  7. Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)

    Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...

  8. POJ 2376 Cleaning Shifts(轮班打扫)

    POJ 2376 Cleaning Shifts(轮班打扫) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] Farmer ...

  9. POJ 3253 Fence Repair(修篱笆)

    POJ 3253 Fence Repair(修篱笆) Time Limit: 2000MS   Memory Limit: 65536K [Description] [题目描述] Farmer Joh ...

随机推荐

  1. javascript——select 标签的使用

    <% String state = (String) request.getAttribute("state"); String day = (String) request ...

  2. Spring(二十一):Spring JdbcTemplate、NamedParameterJdbcTemplate具名参数

    JdbcTemplate主要提供以下五类方法: execute方法:可以用于执行任何SQL语句,一般用于执行DDL语句: update方法及batchUpdate方法:update方法用于执行新增.修 ...

  3. mybaits动态SQL中的DECIMAL

    数据库:mysql数据库字段类型:decimal(11,2)java程序类型:java.math.BigDecimal 使用mybatis的动态语句 <if test ="money! ...

  4. [Spring Boot] Use Component Scan to scan for Bean

    Component Scan is important concept when we want to create Bean. Currently we know what, for the cla ...

  5. JS将"\/Date(1530104033000)\/" 格式化

    JS将/Date(1446704778000)/转换成str: // 对Date的扩展,将 Date 转化为指定格式的String // 月(M).日(d).小时(h).分(m).秒(s).季度(q) ...

  6. 2012年5月阿里巴巴集团”去 IOE”运动的思考与总结【转载+整理】

    原文地址 什么是 IOE,IOE 只是一个简称,分别代表 IBM.Oracle.EMC,确切地说是 IBM 小型机.Oracle 数据库与 EMC 存储设备的组合.这"三驾马车"构 ...

  7. Android开发 - Fragment与Activity生命周期比较

    1. Fragment的生命周期 见下图 2. 与Activity生命周期的对比 见下图 3. 代码场景演示实例 切换到该Fragment: AppListFragment(7649): onAtta ...

  8. JavaScript编程(终极篇)

    JavaScript 实现是由以下 3 个不同部分组成的:    核心(ECMAScript)    文档对象模型(DOM)    浏览器对象模型(BOM) 1.数据类型 typeof 运算符 对变量 ...

  9. C#中RSA加密解密和签名与验证的实现

    RSA加密算法是一种非对称加密算法.在公钥加密标准和电子商业中RSA被广泛使用.RSA是1977年由罗纳德•李维斯特(Ron Rivest).阿迪•萨莫尔(Adi Shamir)和伦纳德•阿德曼(Le ...

  10. LintCode: Search A 2d Matrix

    1. 设查找的数位y,第一行最后一列的数位x 如果x<y,x是第一行最大的,所以第一行都小于y,删除第一行: 如果x>y,x是最后一列最小的,所以最后一列都大于y,删除最后一列: 这样保证 ...