2018-2019-2 《网络对抗技术》Kali安装 Week1 20165212
2018-2019-2 《网络对抗技术》Kali安装 Week1 20165212
1.完成安装linux kali和vm tools
装的第三遍成功安装。前面两次镜像文件不行,没驱动(网卡鼠标驱动都没有..)和要弄镜像仓库不弄不给过.
最终的安装成功截图
2.网络连通&输入法
网络是装好就可以用的,有网卡驱动其他就好办
3.共享文件夹
从VM中选择总是启用共享文件夹,设置好路径后重启kali,用 vmware-hgfsclient 命令查看叫什么,文件夹默认在/mnt/hgfs/下
4.软件源
输完第一个命令弹出一个文本框,把内容换成 deb http://http.kali.org/kali kali-rolling main non-free contrib ,然后输下一条,就 彳亍 了
遇到的问题
vm中装,增强功能VMwareTools这个压缩包,直接解压权限不够,放到/home就能解压,解压后命令行运行install.pt脚本,一路回车即可.
2018-2019-2 《网络对抗技术》Kali安装 Week1 20165212的更多相关文章
- 网络对抗 Exp0 Kali安装 Week1
2018-2019 网络对抗 Exp0 Kali安装 Week1 目录 一.下载 二.安装运行 三.配置 四.问题 一.下载 在百度中搜索kali linux 选择并点击Kali Linux | Pe ...
- 2018-2019-2 《网络对抗技术》Exp0 Kali安装 Week1 20165237
2018-2019-2 <网络对抗技术>Exp0 Kali安装 Week1 20165237 安装虚拟机 首先创建虚拟机 创建好虚拟机后,打开虚拟机进行安装.第一步选择Graphcal i ...
- 2018-2019-2 《网络对抗技术》 Exp0 Kali安装 20165221 Week1
2018-2019-2 <网络对抗技术> Exp0 Kali安装 20165221 Week1 安装Vmware 上学期已经安装过,不再赘述. 如需安装,可参考如何安装vmware 下载v ...
- 2018-2019-2 20165325《网络对抗技术》Exp0 Kali安装 Week1
2018-2019-2 20165325<网络对抗技术>Exp0 Kali安装 Week1 一.安装kali VMware上学期已经有了,主要是下载Kali-Linux-2019.1-vm ...
- 2018-2019-2 《网络对抗技术》Exp0 Kali安装 Week1
- 2018-2019-2 <网络对抗技术>Exp0 Kali安装 Week1 - 安装过程 - 安装Kali VMware上学期已经装好了,Kali的镜像文件是从同学那拷过来的,所以这两 ...
- 2018-2019-2 20165239 《网络对抗技术》Kali的安装 第一周
2018-2019-<网络对抗技术> Kali安装 20165239其米仁增 一.资源下载以及工具安装 1.下载虚拟机工具VMware. 下载链接 :https://www.baidu.c ...
- 2018-2019 20165235 网络对抗技术 Exp0:kali的安装
2018-2019 20165235 网络对抗技术 Exp0:kali的安装 安装kali 在官网上https://www.kali.org/下载kali 下载之后进行解压 打开VMware-> ...
- 2018-2019-2 《网络对抗技术》Exp0 Kali安装 Week1 20165225
2018-2019-2 <网络对抗技术>Exp0 Kali安装 Week1 20165225 - 上Kali官网选择Kali Linux 64 bit的torrent,用迅雷解压即可 安装 ...
- 2018-2019-2 20165336《网络对抗技术》Exp0 Kali安装 Week1
2018-2019-2 20165336<网络对抗技术>Exp0 Kali安装 Week1 一.选择官网kali linux系统的版本 二.配置虚拟机 根据 安装教程(https://bl ...
随机推荐
- Java 常用对象-BigInteger类
2017-11-02 21:57:09 BigInteger类:不可变的任意精度的整数.所有操作中,都以二进制补码形式表示 BigInteger(如 Java 的基本整数类型).BigInteger ...
- spring boot: thymeleaf模板引擎使用
spring boot: thymeleaf模板引擎使用 在pom.xml加入thymeleaf模板依赖 <!-- 添加thymeleaf的依赖 --> <dependency> ...
- yii新手在实例化models(controller调用models实化化)php warning错误
新手在执照yii教程来的时候,config/main.php文件是全新写的,post提交的时候,会出错 include(LoginForm.php) [<a href='function.inc ...
- 雷林鹏分享:C# 枚举(Enum)
C# 枚举(Enum) 枚举是一组命名整型常量.枚举类型是使用 enum 关键字声明的. C# 枚举是值数据类型.换句话说,枚举包含自己的值,且不能继承或传递继承. 声明 enum 变量 声明枚举的一 ...
- UVA-11214 Guarding the Chessboard (迭代加深搜索)
题目大意:在一个国际象棋盘上放置皇后,使得目标全部被占领,求最少的皇后个数. 题目分析:迭代加深搜索,否则超时. 小技巧:用vis[0][r].vis[1][c].vis[2][r+c].vis[c- ...
- MessageFormat格式化数字
使用MessageFormat格式化数字,有一个很隐蔽的技巧点: public static void main(String[] args) { MessageFormat mf = new Mes ...
- Scrum介绍——续
四. Scrum过程 Scrum的过程如图4-1所示 图4-1 Scrum过程 4.1 建立Product Backlog Product Backlog是Product Owner把客户的商业需求按 ...
- POJ 1860 Bellman-Ford算法
转载链接:http://blog.csdn.net/lyy289065406/article/details/6645778 提示:关键在于反向利用Bellman-Ford算法 题目大意 有多种汇币, ...
- SPOJ AMR10I 递归
DES :给你n 块石头.不会超过70.把它们分成n堆.每堆里的石头数做积.问共有多少个数.最终的结果除了1之外都能分解成素数相乘或者素数相乘再乘1.所以可以找到所有不超过70的素数然后进行深搜. 感 ...
- 1strcat/strcpy应用
分析下列程序输出 #include<iostream> #include<string.h> using namespace std; int main() { ]=]=&qu ...