Codeforces1106F 【BSGS】【矩阵快速幂】【exgcd】
首先矩阵快速幂可以算出来第k项的指数,然后可以利用原根的性质,用bsgs和exgcd把答案解出来
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1e2 + 10;
const ll Mod = 998244353;
ll add(ll a, ll b, ll mod = Mod) {
return (a += b) >= mod ? a - mod : a;
}
ll sub(ll a, ll b, ll mod = Mod) {
return (a -= b) < 0 ? a + mod : a;
}
ll mul(ll a, ll b, ll mod = Mod) {
return 1ll * a * b % mod;
}
ll fast_pow(ll a, ll b, ll mod = Mod) {
ll res = 1;
for (; b; b >>= 1, a = mul(a, a, mod))
if (b & 1) res = mul(res, a, mod);
return res;
}
ll n, m, k, b[N];
struct Matrix {
ll g[N][N];
Matrix() {
memset(g, 0, sizeof(g));
}
};
Matrix operator * (const Matrix a, const Matrix b) {
Matrix c;
for (ll i = 1; i <= k; i++)
for (ll j = 1; j <= k; j++)
for (ll p = 1; p <= k; p++)
c.g[i][j] = add(c.g[i][j], mul(a.g[i][p], b.g[p][j], Mod - 1), Mod - 1);
return c;
}
Matrix fast_pow(Matrix a, ll b) {
Matrix res;
for (ll i = 1; i <= k; i++)
res.g[i][i] = 1;
for (; b; b >>= 1, a = a * a)
if (b & 1) res = res * a;
return res;
}
ll bsgs(ll a, ll b) {
map<ll, ll> mp;
mp[b] = 0;
ll cur = 1, limit = sqrt(Mod);
for (ll i = 1; i <= limit; i++) {
cur = mul(cur, a);
mp[mul(b, fast_pow(cur, Mod - 2))] = i;
}
ll now = 1;
for (ll i = 0; i <= limit; i++) {
if (mp.count(now))
return limit * i + mp[now];
now = mul(now, cur);
}
return -1;
}
ll gcd(ll a, ll b) {
return b ? gcd(b, a % b) : a;
}
void exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1, y = 0;
return;
}
exgcd(b, a % b, y, x);
y -= a / b * x;
}
ll exgcd(ll a, ll b, ll c) {
ll g = gcd(a, b);
if (c % g) return -1;
ll x, y;
exgcd(a, b, x, y);
x *= c / g;
x = (x % (b / g) + (b / g)) % (b / g);
return x;
}
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
scanf("%lld", &k);
for (ll i = 1; i <= k; i++)
scanf("%lld", &b[i]);
scanf("%lld %lld", &n, &m);
Matrix tmp;
for (ll i = 1; i < k; i++)
tmp.g[i][i + 1] = 1;
for (ll i = 1; i <= k; i++)
tmp.g[k][i] = b[k - i + 1];
tmp = fast_pow(tmp, n - k);
ll ans1 = bsgs(3, m), ans2 = exgcd(tmp.g[k][k], Mod - 1, ans1);
if (ans1 == -1 || ans2 == -1)
printf("-1");
else
printf("%lld", fast_pow(3, ans2));
return 0;
}
Codeforces1106F 【BSGS】【矩阵快速幂】【exgcd】的更多相关文章
- 2018.08.30 NOIP模拟 kfib(矩阵快速幂+exgcd)
[输入] 一行两个整数 n P [输出] 从小到大输出可能的 k,若不存在,输出 None [样例输入 1] 5 5 [样例输出] 2 [样例解释] f[0] = 2 f[1] = 2 f[2] = ...
- bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...
- 「CodePlus 2017 12 月赛」可做题2(矩阵快速幂+exgcd+二分)
昨天这题死活调不出来结果是一个地方没取模,凉凉. 首先有个一眼就能看出来的规律... 斐波那契数列满足$a_1, a_2, a_1+a_2, a_1+2a_2, 2a_1+3a_2, 3a_1+5a_ ...
- HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表
2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 ...
- Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂
https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...
- CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)
题面 传送门 前置芝士 \(BSGS\) 什么?你不会\(BSGS\)?百度啊 原根 对于素数\(p\)和自然数\(a\),如果满足\(a^x\equiv 1\pmod{p}\)的最小的\(x\)为\ ...
- CF1106F Lunar New Year and a Recursive Sequence 原根、矩阵快速幂、BSGS
传送门 好久没写数论题了写一次调了1h 首先发现递推式是一个乘方的形式,线性递推和矩阵快速幂似乎都做不了,那么是否能够把乘方运算变成加法运算和乘法运算呢? 使用原根!学过\(NTT\)的都知道\(99 ...
- CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs
题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i < k\\ ...
- 2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[ ...
随机推荐
- Lua 中与字符串有关的函数学习
string1 = "lua" print(string.upper(string1)) string2 = 'LGS' print(string.lower(string2)) ...
- C#中的?
1. 可空类型修饰符(?):引用类型可以使用空引用表示一个不存在的值,而值类型通常不能表示为空.例如:string str=null; 是正确的,int i=null; 编译器就会报错.为了使值类型也 ...
- C#将集合和Json格式互相转换的几种方式
1.使用微软自带的System.Web.Extensions.dll转换,该DLL文件一般存在于如下路径:c:\Program Files\Reference Assemblies\Microsoft ...
- LeetCode--198--打家劫舍
问题描述: 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给 ...
- 3-1 LVS-NAT集群
---- (整理)By 小甘丶 什么是集群: 集群是一组相互独立的.通过高速网络互联的计算机,它们构成了一个组,并以单一系统的模式加以管理.(Cluster就是一组计算机,它们作为一个整体向用户提供一 ...
- XML删除节点
XmlDocument doc = new XmlDocument(); doc.Load("Order.xml"); XmlNode xn = doc.SelectSingleN ...
- quartz---springmvc的配置文件正合
quartz---springmvc的配置文件正合 XML <beans xmlns="http://www.springframework.org/schema/beans" ...
- AIX5L内存监控和调整
1.ps ps gv | head -n 1; ps gv | egrep -v "RSS" | sort +6b -7 -n -r PID TTY STAT ...
- BZOJ1605 [Usaco2008 Open]Crisis on the Farm 牧场危机
标题好长&&我是权限狗,汪汪! 题没看懂的我以为这是一道极难滴题目...然后,然后我就看懂题了. 数据少给了一个条件K <= 30...(没这条件还做个鬼...) f[k, i, ...
- 返回最小的k个数
对于一个无序数组,数组中元素为互不相同的整数,请返回其中最小的k个数,顺序与原数组中元素顺序一致. 给定一个整数数组A及它的大小n,同时给定k,请返回其中最小的k个数. 测试样例: [1,2,4,3] ...