CF 1100E Andrew and Taxi(二分答案)
2 seconds
256 megabytes
standard input
standard output
Andrew prefers taxi to other means of transport, but recently most taxi drivers have been acting inappropriately. In order to earn more money, taxi drivers started to drive in circles. Roads in Andrew's city are one-way, and people are not necessary able to travel from one part to another, but it pales in comparison to insidious taxi drivers.
The mayor of the city decided to change the direction of certain roads so that the taxi drivers wouldn't be able to increase the cost of the trip endlessly. More formally, if the taxi driver is on a certain crossroads, they wouldn't be able to reach it again if he performs a nonzero trip.
Traffic controllers are needed in order to change the direction the road goes. For every road it is known how many traffic controllers are needed to change the direction of the road to the opposite one. It is allowed to change the directions of roads one by one, meaning that each traffic controller can participate in reversing two or more roads.
You need to calculate the minimum number of traffic controllers that you need to hire to perform the task and the list of the roads that need to be reversed.
The first line contains two integers nn and mm (2≤n≤1000002≤n≤100000, 1≤m≤1000001≤m≤100000) — the number of crossroads and the number of roads in the city, respectively.
Each of the following mm lines contain three integers uiui, vivi and cici (1≤ui,vi≤n1≤ui,vi≤n, 1≤ci≤1091≤ci≤109, ui≠viui≠vi) — the crossroads the road starts at, the crossroads the road ends at and the number of traffic controllers required to reverse this road.
In the first line output two integers the minimal amount of traffic controllers required to complete the task and amount of roads kk which should be reversed. kk should not be minimized.
In the next line output kk integers separated by spaces — numbers of roads, the directions of which should be reversed. The roads are numerated from 11 in the order they are written in the input. If there are many solutions, print any of them.
5 6
2 1 1
5 2 6
2 3 2
3 4 3
4 5 5
1 5 4
2 2
1 3
5 7
2 1 5
3 2 3
1 3 3
2 4 1
4 3 5
5 4 1
1 5 3
3 3
3 4 7
There are two simple cycles in the first example: 1→5→2→11→5→2→1 and 2→3→4→5→22→3→4→5→2. One traffic controller can only reverse the road 2→12→1 and he can't destroy the second cycle by himself. Two traffic controllers can reverse roads 2→12→1 and 2→32→3 which would satisfy the condition.
In the second example one traffic controller can't destroy the cycle 1→3→2→11→3→2→1. With the help of three controllers we can, for example, reverse roads 1→31→3 ,2→42→4, 1→51→5.
【题意】
给定一张有向图,每条边有边权。你可以花费边权的代价反转一条边,使得原图中没有环。
1、输出最小化的反转的边权的最大值和要反转几条边k(k不必为最小数量)
2、输出你要反转的k条边的序号。(在满足最小化最大值的前提下,任何一种方案皆可)
【分析】
转化为有些边可以翻转,有些边不可以翻转,使得图中没有环。由此二分答案
我们把不能反向的边拿出来,然后跑拓扑排序判环,如果有环则无解,不然一定有一种方案,加入那些可以改变方向的边而不产生环。
新加的边方向:拓扑序小的连向拓扑序大的
Attached official solution.
Suppose we have k traffic controllers. They can turn all edges whose weight is less than or equal to k. Then let's remove all these edges from the graph, make a topological sorting of the remaining graph, and orient the other edges in the order of topological sorting. If there are cycles left in the graph after removing the edges, then we cannot get rid of them, having k traffic controllers. Otherwise, by adding edges we will not add new loops. The parameter k can be iterated through a binary search. Also in binary search, you can go through not all possible values of k, but only the values that are on the edges.
Complexity — O((n+m)logC) or O((n+m)logm).
【代码】
#include<stack>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define debug(x) cerr<<#x<<" "<<x<<'\n';
using namespace std;
inline int read(){
register char ch=getchar();register int x=0;
for(;ch<'0'||ch>'9';ch=getchar());
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x;
}
const int N=1e5+5;
int n,m,cct,in[N],dfn[N],rec[N];
struct data{
int x,y,z;
data(int _x=0,int _y=0,int _z=0){
x=_x;y=_y;z=_z;
}
}b[N];
struct edge{int v,next;}e[N];int tot,head[N];
inline void add(int x,int y){
e[++tot].v=y;e[tot].next=head[x];head[x]=tot;
}
inline bool topo(){
stack<int>s;int cnt=0;
for(int i=1;i<=n;i++) if(!in[i]) s.push(i),dfn[i]=++cnt;
while(!s.empty()){
int x=s.top();s.pop();
for(int j=head[x];j;j=e[j].next){
int v=e[j].v;
if(!--in[v]) s.push(v),dfn[v]=++cnt;
}
}
return cnt==n;
}
#define m(a) memset(a,0,(sizeof a[0])*(n+1));
inline bool check(int now){
m(in);m(dfn);m(head);tot=0;
for(int i=1;i<=m;i++)
if(b[i].z>now)
add(b[i].x,b[i].y),in[b[i].y]++;
return topo();
}
int main(){
n=read();m=read();
int l=0,r=0,mid,ans=0;
for(int i=1,x,y,z;i<=m;i++) x=read(),y=read(),z=read(),b[i]=data(x,y,z),r=max(r,z);
while(l<=r){
mid=l+r>>1;
if(check(mid)){
ans=mid;
r=mid-1;
}
else{
l=mid+1;
}
}
printf("%d ",ans);
check(ans);
for(int i=1;i<=m;i++){
if(dfn[b[i].x]>dfn[b[i].y]){
rec[++cct]=i;
}
}
printf("%d\n",cct);
for(int i=1;i<=cct;i++) printf("%d ",rec[i]);
return 0;
}
CF 1100E Andrew and Taxi(二分答案)的更多相关文章
- CF1100E Andrew and Taxi 二分答案+拓扑排序
\(\color{#0066ff}{ 题目描述 }\) 给定一个有向图,改变其中某些边的方向,它将成为一个有向无环图. 现在求一个改变边方向的方案,使得所选边边权的最大值最小. \(\color{#0 ...
- CF 672D Robin Hood(二分答案)
D. Robin Hood time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- CF1100E Andrew and Taxi
题目地址:CF1100E Andrew and Taxi 二分,每次取到一个 \(mid\) ,只保留长度 \(>mid\) 的边 dfs判环,若有环,说明 \(ans>mid\) ,否则 ...
- CF 371C-Hamburgers[二分答案]
C. Hamburgers time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- Cf Round #403 B. The Meeting Place Cannot Be Changed(二分答案)
The Meeting Place Cannot Be Changed 我发现我最近越来越zz了,md 连调程序都不会了,首先要有想法,之后输出如果和期望的不一样就从输入开始一步一步地调啊,tmd现在 ...
- E. Andrew and Taxi(二分+拓扑判环)
题目链接:http://codeforces.com/contest/1100/problem/E 题目大意:给你n和m,n代表有n个城市,m代表有m条边,然后m行输入三个数,起点,终点,花费.,每一 ...
- [CF#592 E] [二分答案] Minimizing Difference
链接:http://codeforces.com/contest/1244/problem/E 题意: 给定包含$n$个数的数组,你可以执行最多k次操作,使得数组的一个数加1或者减1. 问合理的操作, ...
- E - Andrew and Taxi-二分答案-topo判环
E - Andrew and Taxi 思路 :min max 明显二分答案,二分需要破坏的那些边的中机器人数量最多的那个. check 过程建边时直接忽略掉小于 mid 的边,这样去检验有无环存 ...
- CF-1100 E Andrew and Taxi
CF-1100E Andrew and Taxi https://codeforces.com/contest/1100/problem/E 知识点: 二分 判断图中是否有环 题意: 一个有向图,每边 ...
随机推荐
- linux mysql远程连接的命令
mysql -u 用户名 -h 远程IP地址 -p 随后输入密码. 要确认远程数据库3306端口是否开放,mysql服务是否启动. hadoop@Master:~$ mysql -u root -h ...
- 8. Django系列之上传文件与下载-djang为服务端,requests为客户端
preface 运维平台新上线一个探测功能,需要上传文件到服务器上和下载文件从服务器上,那么我们就看看requests作为客户端,django作为服务器端怎么去处理? 对于静态文件我们不建议通过dja ...
- BareTail大文件日志实时查看工具
BareTail 动态的查看日志文件,就像Linux上的tail tail -f nohup.out 功能: 实时文件查看 tail命令模式,自动滚动 支持2g以上大文件 自动滚动 彩色监控 多文件监 ...
- mybatis启动报错Mapped Statements collection already contains value for com.autoyol.mapper.trans.TransDispatchingMapper解决
1.检查sqlsession配置,在applicationContext文件中.检查mybatis配置文件. 2.检查TransDispatchingMapper.java 是接口类,无注解. 3.T ...
- RequestDispatcher 的 forward和include
1.RequestDispatcher 的 forward和include: http://www.avajava.com/tutorials/lessons/what-is-a-request-di ...
- 转载SQL容易产生的错误问题
概述 因为每天需要审核程序员发布的SQL语句,所以收集了一些程序员的一些常见问题,还有一些平时收集的其它一些问题,这也是很多人容易忽视的问题,在以后收集到的问题会补充在文章末尾,欢迎关注,由于收集的问 ...
- cesium导入3D模型(obj转gltf)
cesium中支持载入3D模型,不过只支持gltf格式.gltf是khronos组织(起草OpenGL标准的那家)定义的一种交换格式,用于互联网或移动设备上展现3d内容,充分支持opengl,webg ...
- Eclipse Maven 配置setting.xml 的镜像远程仓库
1.在.m2中新建settings.xml文件 1.window-->Preferences-->Maven-->User Settings 3.点击open file 编辑将远程仓 ...
- iOS - 解决Unable to add a source with url `https://github.com/CocoaPods/Specs.git` named
1 本来cocopods没有问题,最近创建项目,利用cocopods导入第三方库的时候,出现如下错误: [!] Unable to add a source with url `https://gi ...
- python --help查询python相关命令
C:\Users\lenovo>python --help usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ... O ...