CF 1100E Andrew and Taxi(二分答案)
2 seconds
256 megabytes
standard input
standard output
Andrew prefers taxi to other means of transport, but recently most taxi drivers have been acting inappropriately. In order to earn more money, taxi drivers started to drive in circles. Roads in Andrew's city are one-way, and people are not necessary able to travel from one part to another, but it pales in comparison to insidious taxi drivers.
The mayor of the city decided to change the direction of certain roads so that the taxi drivers wouldn't be able to increase the cost of the trip endlessly. More formally, if the taxi driver is on a certain crossroads, they wouldn't be able to reach it again if he performs a nonzero trip.
Traffic controllers are needed in order to change the direction the road goes. For every road it is known how many traffic controllers are needed to change the direction of the road to the opposite one. It is allowed to change the directions of roads one by one, meaning that each traffic controller can participate in reversing two or more roads.
You need to calculate the minimum number of traffic controllers that you need to hire to perform the task and the list of the roads that need to be reversed.
The first line contains two integers nn and mm (2≤n≤1000002≤n≤100000, 1≤m≤1000001≤m≤100000) — the number of crossroads and the number of roads in the city, respectively.
Each of the following mm lines contain three integers uiui, vivi and cici (1≤ui,vi≤n1≤ui,vi≤n, 1≤ci≤1091≤ci≤109, ui≠viui≠vi) — the crossroads the road starts at, the crossroads the road ends at and the number of traffic controllers required to reverse this road.
In the first line output two integers the minimal amount of traffic controllers required to complete the task and amount of roads kk which should be reversed. kk should not be minimized.
In the next line output kk integers separated by spaces — numbers of roads, the directions of which should be reversed. The roads are numerated from 11 in the order they are written in the input. If there are many solutions, print any of them.
5 6
2 1 1
5 2 6
2 3 2
3 4 3
4 5 5
1 5 4
2 2
1 3
5 7
2 1 5
3 2 3
1 3 3
2 4 1
4 3 5
5 4 1
1 5 3
3 3
3 4 7
There are two simple cycles in the first example: 1→5→2→11→5→2→1 and 2→3→4→5→22→3→4→5→2. One traffic controller can only reverse the road 2→12→1 and he can't destroy the second cycle by himself. Two traffic controllers can reverse roads 2→12→1 and 2→32→3 which would satisfy the condition.
In the second example one traffic controller can't destroy the cycle 1→3→2→11→3→2→1. With the help of three controllers we can, for example, reverse roads 1→31→3 ,2→42→4, 1→51→5.
【题意】
给定一张有向图,每条边有边权。你可以花费边权的代价反转一条边,使得原图中没有环。
1、输出最小化的反转的边权的最大值和要反转几条边k(k不必为最小数量)
2、输出你要反转的k条边的序号。(在满足最小化最大值的前提下,任何一种方案皆可)
【分析】
转化为有些边可以翻转,有些边不可以翻转,使得图中没有环。由此二分答案
我们把不能反向的边拿出来,然后跑拓扑排序判环,如果有环则无解,不然一定有一种方案,加入那些可以改变方向的边而不产生环。
新加的边方向:拓扑序小的连向拓扑序大的
Attached official solution.
Suppose we have k traffic controllers. They can turn all edges whose weight is less than or equal to k. Then let's remove all these edges from the graph, make a topological sorting of the remaining graph, and orient the other edges in the order of topological sorting. If there are cycles left in the graph after removing the edges, then we cannot get rid of them, having k traffic controllers. Otherwise, by adding edges we will not add new loops. The parameter k can be iterated through a binary search. Also in binary search, you can go through not all possible values of k, but only the values that are on the edges.
Complexity — O((n+m)logC) or O((n+m)logm).
【代码】
#include<stack>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define debug(x) cerr<<#x<<" "<<x<<'\n';
using namespace std;
inline int read(){
register char ch=getchar();register int x=0;
for(;ch<'0'||ch>'9';ch=getchar());
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x;
}
const int N=1e5+5;
int n,m,cct,in[N],dfn[N],rec[N];
struct data{
int x,y,z;
data(int _x=0,int _y=0,int _z=0){
x=_x;y=_y;z=_z;
}
}b[N];
struct edge{int v,next;}e[N];int tot,head[N];
inline void add(int x,int y){
e[++tot].v=y;e[tot].next=head[x];head[x]=tot;
}
inline bool topo(){
stack<int>s;int cnt=0;
for(int i=1;i<=n;i++) if(!in[i]) s.push(i),dfn[i]=++cnt;
while(!s.empty()){
int x=s.top();s.pop();
for(int j=head[x];j;j=e[j].next){
int v=e[j].v;
if(!--in[v]) s.push(v),dfn[v]=++cnt;
}
}
return cnt==n;
}
#define m(a) memset(a,0,(sizeof a[0])*(n+1));
inline bool check(int now){
m(in);m(dfn);m(head);tot=0;
for(int i=1;i<=m;i++)
if(b[i].z>now)
add(b[i].x,b[i].y),in[b[i].y]++;
return topo();
}
int main(){
n=read();m=read();
int l=0,r=0,mid,ans=0;
for(int i=1,x,y,z;i<=m;i++) x=read(),y=read(),z=read(),b[i]=data(x,y,z),r=max(r,z);
while(l<=r){
mid=l+r>>1;
if(check(mid)){
ans=mid;
r=mid-1;
}
else{
l=mid+1;
}
}
printf("%d ",ans);
check(ans);
for(int i=1;i<=m;i++){
if(dfn[b[i].x]>dfn[b[i].y]){
rec[++cct]=i;
}
}
printf("%d\n",cct);
for(int i=1;i<=cct;i++) printf("%d ",rec[i]);
return 0;
}
CF 1100E Andrew and Taxi(二分答案)的更多相关文章
- CF1100E Andrew and Taxi 二分答案+拓扑排序
\(\color{#0066ff}{ 题目描述 }\) 给定一个有向图,改变其中某些边的方向,它将成为一个有向无环图. 现在求一个改变边方向的方案,使得所选边边权的最大值最小. \(\color{#0 ...
- CF 672D Robin Hood(二分答案)
D. Robin Hood time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- CF1100E Andrew and Taxi
题目地址:CF1100E Andrew and Taxi 二分,每次取到一个 \(mid\) ,只保留长度 \(>mid\) 的边 dfs判环,若有环,说明 \(ans>mid\) ,否则 ...
- CF 371C-Hamburgers[二分答案]
C. Hamburgers time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- Cf Round #403 B. The Meeting Place Cannot Be Changed(二分答案)
The Meeting Place Cannot Be Changed 我发现我最近越来越zz了,md 连调程序都不会了,首先要有想法,之后输出如果和期望的不一样就从输入开始一步一步地调啊,tmd现在 ...
- E. Andrew and Taxi(二分+拓扑判环)
题目链接:http://codeforces.com/contest/1100/problem/E 题目大意:给你n和m,n代表有n个城市,m代表有m条边,然后m行输入三个数,起点,终点,花费.,每一 ...
- [CF#592 E] [二分答案] Minimizing Difference
链接:http://codeforces.com/contest/1244/problem/E 题意: 给定包含$n$个数的数组,你可以执行最多k次操作,使得数组的一个数加1或者减1. 问合理的操作, ...
- E - Andrew and Taxi-二分答案-topo判环
E - Andrew and Taxi 思路 :min max 明显二分答案,二分需要破坏的那些边的中机器人数量最多的那个. check 过程建边时直接忽略掉小于 mid 的边,这样去检验有无环存 ...
- CF-1100 E Andrew and Taxi
CF-1100E Andrew and Taxi https://codeforces.com/contest/1100/problem/E 知识点: 二分 判断图中是否有环 题意: 一个有向图,每边 ...
随机推荐
- 一款纯HTML+CSS+JS富文本编辑器-handyeditor
官网:http://he.catfish-cms.com/ 修改版本(修改一些BUG和图片上传服务器 点击下载: handyeditor富文本编辑器.zip): 图片上传接口上传类型: Content ...
- iOS: 查看 UIView 的视图树
在想要查看的 UIView 附近打个断点,运行,直到停在断点处,在控制台键入:po [view recursiveDescription],回车. (lldb) po [self recursiveD ...
- 周期性调度器scheduler_tick
周期性调度器由中断实现,系统定时产生一个中断,然后启动周期性调度器,周期性调度器执行过程中要关闭中断, 周期性调度器执行完毕后再打开中断(handle_IRQ_event, IRQF_DISABLE ...
- 如何用一个for循环打印出一个二维数组
思路分析: 二维数组在内存中默认是按照行存储的,比如一个二维数组{{1,2,3,},{4,5,6}},它在内存中存储的顺序就是1.2.3.4.5.6,也就是说,对于这6个数组元素,按照从0到5给它们编 ...
- Nginx配置中文域名
今天碰到一个好玩的问题,还以为是nginx的缓存,各种清理就差把nginx卸载了,后来想想不对应该是中文域名的问题,对中文进行编码,搞定,如下: ... server { listen 80; ser ...
- Linux下安装中文宋体
1,#cd /usr/share/fonts/default 2,mkdir -p ./truetype/simsun 3,取得simsun.ttc文件:如果网上下载不到则在windows (c:/w ...
- SpringMVC由浅入深day01_7入门程序小结
7 入门程序小结 通过入门程序理解springmvc前端控制器.处理器映射器.处理器适配器.视图解析器用法. 前端控制器配置: 处理器映射器: 非注解处理器映射器(了解) 注解的处理器映射器(掌握) ...
- C#中的Abstract、Virtual、Interface理解
容易混淆是必须的,都是与继承有关系,并且涉及到override的使用 一.Virtual方法(虚方法) virtual 关键字用于在基类中修饰方法.virtual的使用会有两种情况: 情况1:在基类中 ...
- IDEA maven项目下测试mybatis例子,使用mappper class或package引入mapper映射文件,总是报错Invalid bound statement(所有配置完全正确)
困扰几个小时,终于查到解决办法及原因(可以直接到最后看解决方案) 环境就是用IDEA搭建的maven项目,主要jar包引入配置如下 <dependencies> <dependenc ...
- iptables相关操作以及简单理解端口和服务之间关系
一般CentOS7默认安装的是firewall不是iptables 1.查看firewall状态 firewall-cmd --state 关闭后显示not running,开启后显示running ...