GuGuFishtion

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1204    Accepted Submission(s): 459

Problem Description

Today XianYu is too busy with his homework, but the boring GuGu is still disturbing him!!!!!!

At the break time, an evil idea arises in XianYu's mind.

‘Come on, you xxxxxxx little guy.’

‘I will give you a function ϕ(x) which counts the positive integers up to x that are relatively prime to x.’

‘And now I give you a fishtion, which named GuGu Fishtion, in memory of a great guy named XianYu and a disturbing and pitiful guy GuGu who will be cooked without solving my problem in 5 hours.’

‘The given fishtion is defined as follow:

Gu(a,b)=ϕ(ab)ϕ(a)ϕ(b)

And now you, the xxxxxxx little guy, have to solve the problem below given m,n,p.’

(∑a=1m∑b=1nGu(a,b))(modp)

So SMART and KINDHEARTED you are, so could you please help GuGu to solve this problem?

‘GU GU!’ GuGu thanks.

Input

Input contains an integer T indicating the number of cases, followed by T lines. Each line contains three integers m,n,p as described above.

1≤T≤3

1≤m,n≤1,000,000

max(m,n)<p≤1,000,000,007

And given p is a prime.

Output

Please output exactly T lines and each line contains only one integer representing the answer.

Sample Input


 

1 5 7 23

Sample Output


 

2

Source

2018 Multi-University Training Contest 7

Recommend

chendu   |   We have carefully selected several similar problems for you:  6408 6407 6406 6405 6404

先去学习了一下欧拉函数

这道题根据欧拉函数的定义化简可以得到

因此对于题目要求的

我们需要先计算每一个i/φ(i)的值, 再计算gcd() = i的数对的数目

先预处理出所有的φi

对于一个数i,在a∈[1,n],b∈[1,m]a∈[1,n],b∈[1,m]的范围内,设f[i]为gcd为(i,2i,3i...)的对数设f[i]为gcd为(i,2i,3i...)的对数

显然 : f[i]=[n/i]∗[m/i]f[i]=[n/i]∗[m/i]

那么我们从大到小维护f[i]f[i],因为我们要的是 gcd=igcd=i 的对数,所以要把 gcd=2igcd=2i 的情况减去【预处理】


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#define inf 1e18
using namespace std; int t, n, m;
const int maxn = 1000005;
long long f[maxn], a[maxn], p;
long long cnt[maxn]; long long is[maxn], phi[maxn], pri[maxn], nump;
/*
特性 :
1.若a为质数,phi[a]=a-1;
2.若a为质数,b mod a=0,phi[a*b]=phi[b]*a
3.若a,b互质,phi[a*b]=phi[a]*phi[b](当a为质数时,if b mod a!=0 ,phi[a*b]=phi[a]*phi[b])
*/
void make()
{
memset(phi, 0, sizeof(phi));
memset(f, 0, sizeof(f));
phi[1] = 1;
for(int i = 2; i <= maxn; i++){
if(!is[i]){//i是素数
pri[++nump] = i;
phi[i] = i - 1;
}
for(int j = 1; j <= nump && pri[j] * i < maxn; j++){//筛
is[pri[j] * i] = 1;
if(i % pri[j] == 0){
phi[pri[j] * i] = phi[i] * pri[j];
break;
}
else phi[pri[j] * i] = phi[i] *(pri[j] - 1);
}
} cnt[1] = 1;
for(int i = 1; i < maxn; i++){
for(int j = 2 * i; j < maxn; j += i){
cnt[j] -= cnt[i];
}
}
} void deal()
{
f[1] = 1;
for(int i = 2; i <= min(n, m); i++)
f[i] = f[p % i] * (p - p / i) % p;
for(int i = 1; i <= min(n, m); i++){
a[i] = (long long)i * f[phi[i]] % p;
}
} long long get(int n, int m)
{
long long ans = 0;
for(int i = 1; i <= min(n, m); i++){
ans+= (long long ) cnt[i] * (n / i) * (m / i);
ans %= p;
}
return ans;
} int main()
{
make();
cin>>t;
while(t--){
scanf("%d%d%lld", &m, &n, &p);
deal();
long long ans = 0;
for(int i = 1; i <= min(n, m); i++){
ans += (long long )a[i] * get(n / i, m / i);
ans %= p;
}
printf("%lld\n", ans);
}
return 0;
}

hdu6390GuGuFishtion【数论】的更多相关文章

  1. Codeforces Round #382 Div. 2【数论】

    C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...

  2. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

  3. 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)

    ~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...

  4. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  5. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  6. bzoj2219: 数论之神

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  7. hdu5072 Coprime (2014鞍山区域赛C题)(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...

  8. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  9. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

随机推荐

  1. java okhhtp下载学信网学籍信息

    学信网的登录有验证码,是那种计算数字或者汉字识别的,很难识别.最近连学籍信息和学历信息也换成图片了,常规的正则 css xpath都不能使. 下载图片,需要先登录,获取登陆后的cookie和学籍信息的 ...

  2. 正则 /\D/g

    onKeyUp="this.value=this.value.replace(/\D/g,'');"红色的是什么意识 /g是什么意思 ----------------------- ...

  3. 2、一、Introduction(入门):1、Application Fundamentals(应用程序基础)

    一.Introduction(入门) 1.Application Fundamentals(应用程序基础) Android apps are written in the Java programmi ...

  4. HTTPS原理,以及加密、解密的原理。

    https://blog.csdn.net/Yang_yangyang/article/details/79702583 摘要:本文用图文的形式一步步还原HTTPS的设计过程,进而深入了解原理. A在 ...

  5. Uva--11324--The Largest Clique【有向图强连通分量】

    链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&am ...

  6. JAVA WEB ------ 文件下载及导出数据到office Execl表格

    文件下载需要五步: 1.设置文件ContentType类型 // 设置文件ContentType类型,这样设置,会自动判断下载文件类型 response.setContentType("mu ...

  7. ajax简单手写了一个猜拳游戏

    使用ajax简单写一个猜拳游戏 HTML代码 <!DOCTYPE HTML> <html lang="en-US"> <head> <me ...

  8. RF-For循环使用

    场景1:

  9. SpringBoot(三)-- 整合FreeMarker模板

    1.pom依赖 <!-- 引入freeMarker的依赖包. --> <dependency> <groupId>org.springframework.boot& ...

  10. 给TextView加上多彩效果:改变部分字体的大小和颜色

    转载请注明出处:http://blog.csdn.net/singwhatiwanna/article/details/18363899 前言 在实际使用中,有时候会遇到特殊需求,比如pm突发奇想,想 ...