GuGuFishtion

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1204    Accepted Submission(s): 459

Problem Description

Today XianYu is too busy with his homework, but the boring GuGu is still disturbing him!!!!!!

At the break time, an evil idea arises in XianYu's mind.

‘Come on, you xxxxxxx little guy.’

‘I will give you a function ϕ(x) which counts the positive integers up to x that are relatively prime to x.’

‘And now I give you a fishtion, which named GuGu Fishtion, in memory of a great guy named XianYu and a disturbing and pitiful guy GuGu who will be cooked without solving my problem in 5 hours.’

‘The given fishtion is defined as follow:

Gu(a,b)=ϕ(ab)ϕ(a)ϕ(b)

And now you, the xxxxxxx little guy, have to solve the problem below given m,n,p.’

(∑a=1m∑b=1nGu(a,b))(modp)

So SMART and KINDHEARTED you are, so could you please help GuGu to solve this problem?

‘GU GU!’ GuGu thanks.

Input

Input contains an integer T indicating the number of cases, followed by T lines. Each line contains three integers m,n,p as described above.

1≤T≤3

1≤m,n≤1,000,000

max(m,n)<p≤1,000,000,007

And given p is a prime.

Output

Please output exactly T lines and each line contains only one integer representing the answer.

Sample Input


 

1 5 7 23

Sample Output


 

2

Source

2018 Multi-University Training Contest 7

Recommend

chendu   |   We have carefully selected several similar problems for you:  6408 6407 6406 6405 6404

先去学习了一下欧拉函数

这道题根据欧拉函数的定义化简可以得到

因此对于题目要求的

我们需要先计算每一个i/φ(i)的值, 再计算gcd() = i的数对的数目

先预处理出所有的φi

对于一个数i,在a∈[1,n],b∈[1,m]a∈[1,n],b∈[1,m]的范围内,设f[i]为gcd为(i,2i,3i...)的对数设f[i]为gcd为(i,2i,3i...)的对数

显然 : f[i]=[n/i]∗[m/i]f[i]=[n/i]∗[m/i]

那么我们从大到小维护f[i]f[i],因为我们要的是 gcd=igcd=i 的对数,所以要把 gcd=2igcd=2i 的情况减去【预处理】


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#define inf 1e18
using namespace std; int t, n, m;
const int maxn = 1000005;
long long f[maxn], a[maxn], p;
long long cnt[maxn]; long long is[maxn], phi[maxn], pri[maxn], nump;
/*
特性 :
1.若a为质数,phi[a]=a-1;
2.若a为质数,b mod a=0,phi[a*b]=phi[b]*a
3.若a,b互质,phi[a*b]=phi[a]*phi[b](当a为质数时,if b mod a!=0 ,phi[a*b]=phi[a]*phi[b])
*/
void make()
{
memset(phi, 0, sizeof(phi));
memset(f, 0, sizeof(f));
phi[1] = 1;
for(int i = 2; i <= maxn; i++){
if(!is[i]){//i是素数
pri[++nump] = i;
phi[i] = i - 1;
}
for(int j = 1; j <= nump && pri[j] * i < maxn; j++){//筛
is[pri[j] * i] = 1;
if(i % pri[j] == 0){
phi[pri[j] * i] = phi[i] * pri[j];
break;
}
else phi[pri[j] * i] = phi[i] *(pri[j] - 1);
}
} cnt[1] = 1;
for(int i = 1; i < maxn; i++){
for(int j = 2 * i; j < maxn; j += i){
cnt[j] -= cnt[i];
}
}
} void deal()
{
f[1] = 1;
for(int i = 2; i <= min(n, m); i++)
f[i] = f[p % i] * (p - p / i) % p;
for(int i = 1; i <= min(n, m); i++){
a[i] = (long long)i * f[phi[i]] % p;
}
} long long get(int n, int m)
{
long long ans = 0;
for(int i = 1; i <= min(n, m); i++){
ans+= (long long ) cnt[i] * (n / i) * (m / i);
ans %= p;
}
return ans;
} int main()
{
make();
cin>>t;
while(t--){
scanf("%d%d%lld", &m, &n, &p);
deal();
long long ans = 0;
for(int i = 1; i <= min(n, m); i++){
ans += (long long )a[i] * get(n / i, m / i);
ans %= p;
}
printf("%lld\n", ans);
}
return 0;
}

hdu6390GuGuFishtion【数论】的更多相关文章

  1. Codeforces Round #382 Div. 2【数论】

    C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...

  2. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

  3. 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)

    ~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...

  4. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  5. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  6. bzoj2219: 数论之神

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  7. hdu5072 Coprime (2014鞍山区域赛C题)(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...

  8. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  9. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

随机推荐

  1. 让Json更懂中文(JSON_UNESCAPED_UNICODE)

    我们知道, 用PHP的json_encode来处理中文的时候, 中文都会被编码, 变成不可读的, 类似”\u***”的格式, 还会在一定程度上增加传输的数据量. <?php echo json_ ...

  2. xcode 5.1打包iOS 7.1应用问题笔记

    XCODE 5.1默认情况下是要求应用都通过64位编译.但是往往有些第三方的类库还是32位.还木有更新64位类库.使得项目编译出错. 解决办法: BuildSetting 的Valid Archite ...

  3. SpringMVC-----使用Maven创建Web项目

    1.创建一个Maven的project 2.不使用骨架,去掉勾 3.这里的Packing 选择 war的形式 由于packing是war包,那么下面也就多出了webapp的目录 4.由于我们的项目要使 ...

  4. SpringBoot------热部署(devtools)(推荐)

    1.修改pom.xml文件 <project> <dependencies> <!-- 使用devtool热部署插件(推荐) --> <dependency& ...

  5. 【RF库Collections测试】List Should Contain Value

    Name:List Should Contain ValueSource:Collections <test library>Arguments:[ list_ | value | msg ...

  6. SVN设置没有写log不能commit

    操作方法:在SVN的Repositories下,找到要配置的项目,在项目目录下找到hooks文件夹,在其下创建pre-commit.bat文件,把下面复制进去就可以了(无需重启,如果改动,保存bat文 ...

  7. Elasticsearch 5.4.3 聚合分组

    第一个分析需求:计算每个tag下的商品数量 GET /ecommerce/product/_search { "aggs": { "group_by_tags" ...

  8. Hibernate系列之基本配置

    一.概述 Hibernate是一个开放源码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,使我们可以使用对象的编程思维来操作数据库. 二.配置准备 IDE:Eclipse 下载Jar包: ...

  9. thinkphp3.2 实现点击图片或文字进入内容页

    首先要先把页面渲染出来,http://www.mmkb.com/weixiang/index/index.html <div class="main3 mt"> < ...

  10. linux多行注释

    1.多行注释:   1. 首先按esc进入命令行模式下,按下Ctrl + v,进入列(也叫区块)模式;   2. 在行首使用上下键选择需要注释的多行;   3. 按下键盘(大写)“I”键,进入插入模式 ...