Kafka分区数与消费者个数
Kafka的分区数是不是越多越好?
分区多的优点
kafka使用分区将topic的消息打散到多个分区分布保存在不同的broker上,实现了producer和consumer消息处理的高吞吐量。Kafka的producer和consumer都可以多线程地并行操作,而每个线程处理的是一个分区的数据。因此分区实际上是调优Kafka并行度的最小单元。对于producer而言,它实际上是用多个线程并发地向不同分区所在的broker发起Socket连接同时给这些分区发送消息;而consumer,同一个消费组内的所有consumer线程都被指定topic的某一个分区进行消费。
所以说,如果一个topic分区越多,理论上整个集群所能达到的吞吐量就越大。
分区不是越多越好
分区是否越多越好呢?显然也不是,因为每个分区都有自己的开销:
一、客户端/服务器端需要使用的内存就越多 Kafka0.8.2之后,在客户端producer有个参数batch.size,默认是16KB。它会为每个分区缓存消息,一旦满了就打包将消息批量发出。看上去这是个能够提升性能的设计。不过很显然,因为这个参数是分区级别的,如果分区数越多,这部分缓存所需的内存占用也会更多。假设你有10000个分区,按照默认设置,这部分缓存需要占用约157MB的内存。而consumer端呢?我们抛开获取数据所需的内存不说,只说线程的开销。如果还是假设有10000个分区,同时consumer线程数要匹配分区数(大部分情况下是最佳的消费吞吐量配置)的话,那么在consumer client就要创建10000个线程,也需要创建大约10000个Socket去获取分区数据。这里面的线程切换的开销本身已经不容小觑了。
服务器端的开销也不小,如果阅读Kafka源码的话可以发现,服务器端的很多组件都在内存中维护了分区级别的缓存,比如controller,FetcherManager等,因此分区数越多,这种缓存的成本就越大。
二、文件句柄的开销 每个分区在底层文件系统都有属于自己的一个目录。该目录下通常会有两个文件: base_offset.log和base_offset.index。Kafak的controller和ReplicaManager会为每个broker都保存这两个文件句柄(file handler)。很明显,如果分区数越多,所需要保持打开状态的文件句柄数也就越多,最终可能会突破你的ulimit -n的限制。
三、降低高可用性 Kafka通过副本(replica)机制来保证高可用。具体做法就是为每个分区保存若干个副本(replica_factor指定副本数)。每个副本保存在不同的broker上。期中的一个副本充当leader 副本,负责处理producer和consumer请求。其他副本充当follower角色,由Kafka controller负责保证与leader的同步。如果leader所在的broker挂掉了,contorller会检测到然后在zookeeper的帮助下重选出新的leader——这中间会有短暂的不可用时间窗口,虽然大部分情况下可能只是几毫秒级别。但如果你有10000个分区,10个broker,也就是说平均每个broker上有1000个分区。此时这个broker挂掉了,那么zookeeper和controller需要立即对这1000个分区进行leader选举。比起很少的分区leader选举而言,这必然要花更长的时间,并且通常不是线性累加的。如果这个broker还同时是controller情况就更糟了。
如何确定分区数量呢
可以遵循一定的步骤来尝试确定分区数:创建一个只有1个分区的topic,然后测试这个topic的producer吞吐量和consumer吞吐量。假设它们的值分别是Tp和Tc,单位可以是MB/s。然后假设总的目标吞吐量是Tt,那么分区数 = Tt / max(Tp, Tc)
说明:Tp表示producer的吞吐量。测试producer通常是很容易的,因为它的逻辑非常简单,就是直接发送消息到Kafka就好了。Tc表示consumer的吞吐量。测试Tc通常与应用的关系更大, 因为Tc的值取决于你拿到消息之后执行什么操作,因此Tc的测试通常也要麻烦一些。
一条消息如何知道要被发送到哪个分区?
按照key值分配
默认情况下,Kafka根据传递消息的key来进行分区的分配,即hash(key) % numPartitions:
def partition(key: Any, numPartitions: Int): Int = {
Utils.abs(key.hashCode) % numPartitions
}
这保证了相同key的消息一定会被路由到相同的分区。
key为null时,从缓存中取分区id或者随机取一个
如果你没有指定key,那么Kafka是如何确定这条消息去往哪个分区的呢?
if(key == null) { // 如果没有指定key
val id = sendPartitionPerTopicCache.get(topic) // 先看看Kafka有没有缓存的现成的分区Id
id match {
case Some(partitionId) =>
partitionId // 如果有的话直接使用这个分区Id就好了
case None => // 如果没有的话,
val availablePartitions = topicPartitionList.filter(_.leaderBrokerIdOpt.isDefined) //找出所有可用分区的leader所在的broker
if (availablePartitions.isEmpty)
throw new LeaderNotAvailableException("No leader for any partition in topic " + topic)
val index = Utils.abs(Random.nextInt) % availablePartitions.size // 从中随机挑一个
val partitionId = availablePartitions(index).partitionId
sendPartitionPerTopicCache.put(topic, partitionId) // 更新缓存以备下一次直接使用
partitionId
}
}
不指定key时,Kafka几乎就是随机找一个分区发送无key的消息,然后把这个分区号加入到缓存中以备后面直接使用——当然了,Kafka本身也会清空该缓存(默认每10分钟或每次请求topic元数据时)。
Consumer个数与分区数有什么关系?
topic下的一个分区只能被同一个consumer group下的一个consumer线程来消费,但反之并不成立,即一个consumer线程可以消费多个分区的数据,比如Kafka提供的ConsoleConsumer,默认就只是一个线程来消费所有分区的数据。
即分区数决定了同组消费者个数的上限
所以,如果你的分区数是N,那么最好线程数也保持为N,这样通常能够达到最大的吞吐量。超过N的配置只是浪费系统资源,因为多出的线程不会被分配到任何分区。
Consumer消费Partition的分配策略
Kafka提供的两种分配策略: range和roundrobin,由参数partition.assignment.strategy指定,默认是range策略。
当以下事件发生时,Kafka 将会进行一次分区分配:
- 同一个 Consumer Group 内新增消费者
- 消费者离开当前所属的Consumer Group,包括shuts down 或 crashes
- 订阅的主题新增分区
将分区的所有权从一个消费者移到另一个消费者称为重新平衡(rebalance),如何rebalance就涉及到本文提到的分区分配策略。
下面我们将详细介绍 Kafka 内置的两种分区分配策略。本文假设我们有个名为 T1 的主题,其包含了10个分区,然后我们有两个消费者(C1,C2)
来消费这10个分区里面的数据,而且 C1 的 num.streams = 1,C2 的 num.streams = 2。
Range strategy
Range策略是对每个主题而言的,首先对同一个主题里面的分区按照序号进行排序,并对消费者按照字母顺序进行排序。在我们的例子里面,排完序的分区将会是0, 1, 2, 3, 4, 5, 6, 7, 8, 9;消费者线程排完序将会是C1-0, C2-0, C2-1。然后将partitions的个数除于消费者线程的总数来决定每个消费者线程消费几个分区。如果除不尽,那么前面几个消费者线程将会多消费一个分区。在我们的例子里面,我们有10个分区,3个消费者线程, 10 / 3 = 3,而且除不尽,那么消费者线程 C1-0 将会多消费一个分区,所以最后分区分配的结果看起来是这样的:
- C1-0 将消费 0, 1, 2, 3 分区
- C2-0 将消费 4, 5, 6 分区
- C2-1 将消费 7, 8, 9 分区
假如我们有11个分区,那么最后分区分配的结果看起来是这样的:
- C1-0 将消费 0, 1, 2, 3 分区
- C2-0 将消费 4, 5, 6, 7 分区
- C2-1 将消费 8, 9, 10 分区
假如我们有2个主题(T1和T2),分别有10个分区,那么最后分区分配的结果看起来是这样的:
- C1-0 将消费 T1主题的 0, 1, 2, 3 分区以及 T2主题的 0, 1, 2, 3分区
- C2-0 将消费 T1主题的 4, 5, 6 分区以及 T2主题的 4, 5, 6分区
- C2-1 将消费 T1主题的 7, 8, 9 分区以及 T2主题的 7, 8, 9分区
可以看出,C1-0 消费者线程比其他消费者线程多消费了2个分区,这就是Range strategy的一个很明显的弊端。
RoundRobin strategy
使用RoundRobin策略有两个前提条件必须满足:
- 同一个Consumer Group里面的所有消费者的num.streams必须相等;
- 每个消费者订阅的主题必须相同。
所以这里假设前面提到的2个消费者的num.streams = 2。RoundRobin策略的工作原理:将所有主题的分区组成 TopicAndPartition 列表,然后对 TopicAndPartition 列表按照 hashCode 进行排序,看下面的代码应该会明白:
val allTopicPartitions = ctx.partitionsForTopic.flatMap { case(topic, partitions) =>
info("Consumer %s rebalancing the following partitions for topic %s: %s"
.format(ctx.consumerId, topic, partitions))
partitions.map(partition => {
TopicAndPartition(topic, partition)
})
}.toSeq.sortWith((topicPartition1, topicPartition2) => {
/*
* Randomize the order by taking the hashcode to reduce the likelihood of all partitions of a given topic ending
* up on one consumer (if it has a high enough stream count).
*/
topicPartition1.toString.hashCode < topicPartition2.toString.hashCode
})
最后按照round-robin风格将分区分别分配给不同的消费者线程。
在这个的例子里面,假如按照 hashCode 排序完的topic-partitions组依次为T1-5, T1-3, T1-0, T1-8, T1-2, T1-1, T1-4, T1-7, T1-6, T1-9,我们的消费者线程排序为C1-0, C1-1, C2-0, C2-1,最后分区分配的结果为:
- C1-0 将消费 T1-5, T1-2, T1-6 分区;
- C1-1 将消费 T1-3, T1-1, T1-9 分区;
- C2-0 将消费 T1-0, T1-4 分区;
- C2-1 将消费 T1-8, T1-7 分区;
多个主题的分区分配和单个主题类似。遗憾的是,目前我们还不能自定义分区分配策略,只能通过partition.assignment.strategy参数选择 range 或 roundrobin。
转自:https://www.jianshu.com/p/dbbca800f607
Kafka分区数与消费者个数的更多相关文章
- Kafka 消费组消费者分配策略
body { margin: 0 auto; font: 13px / 1 Helvetica, Arial, sans-serif; color: rgba(68, 68, 68, 1); padd ...
- kafka项目经验之如何进行Kafka压力测试、如何计算Kafka分区数、如何确定Kaftka集群机器数量
@ 目录 Kafka压测 Kafka Producer(生产)压力测试 Kafka Consumer(消费)压力测试 计算Kafka分区数 Kafka机器数量计算 Kafka压测 用Kafka官方自带 ...
- 关于Kafka 的 consumer 消费者处理的一些见解
前言 在上一篇 Kafka使用Java实现数据的生产和消费demo 中介绍如何简单的使用kafka进行数据传输.本篇则重点介绍kafka中的 consumer 消费者的讲解. 应用场景 在上一篇kaf ...
- [Spark][kafka]kafka 生产者,消费者 互动例子
[Spark][kafka]kafka 生产者,消费者 互动例子 # pwd/usr/local/kafka_2.11-0.10.0.1/bin 创建topic:# ./kafka-topics.sh ...
- kafka生产者和消费者流程
前言 根据源码分析kafka java客户端的生产者和消费者的流程. 基于zookeeper的旧消费者 kafka消费者从消费数据到关闭经历的流程. 由于3个核心线程 基于zookeeper的连接器监 ...
- Apache Kafka 0.9消费者客户端
当Kafka最初创建时,它与Scala生产者和消费者客户端一起运送.随着时间的推移,我们开始意识到这些API的许多限制.例如,我们有一个“高级”消费者API,它支持消费者组并处理故障转移,但不支持许多 ...
- kafka生产者和消费者api的简单使用
kafka生产者和消费者api的简单使用 一.背景 二.需要实现的功能 1.生产者实现功能 1.KafkaProducer线程安全的,可以在多线程中使用. 2.消息发送的key和value的序列化 3 ...
- kafka学习(三)kafka生产者,消费者详解
文章更新时间:2020/06/14 一.生产者 当我们发送消息之前,先问几个问题:每条消息都是很关键且不能容忍丢失么?偶尔重复消息可以么?我们关注的是消息延迟还是写入消息的吞吐量? 举个例子,有一个信 ...
- Kafka分区与消费者的关系
1. 前言 我们知道,生产者发送消息到主题,消费者订阅主题(以消费者组的名义订阅),而主题下是分区,消息是存储在分区中的,所以事实上生产者发送消息到分区,消费者则从分区读取消息,那么,这里问题来了, ...
随机推荐
- 【转载】Ajax JS 跨域请求
原文: 简单的ajax请求:http://blog.csdn.net/net_lover/article/details/5172509 复杂的ajax请求:http://blog.csdn.net/ ...
- Ubuntu 13.10 安装软件失败后出现的问题——已安装 post-installation 脚本 返回了错误号 1
安装Oracle-java7-installer失败后,再次重新安装后出现错误-- dpkg: error processing oracle-java7-installer (--configure ...
- java字符串拼接的几种方式
1. plus方式 当左右两个量其中有一个为String类型时,用plus方式可将两个量转成字符串并拼接. String a="";int b=0xb;String c=a+b;2 ...
- C#基础第一天-作业答案
题一答案: Console.WriteLine("请输入a"); int a = Convert.ToInt32(Console.ReadLine()); Console.Writ ...
- laravel用redis保存session遇到的坑,没报错,但redis-cli就是查不到
laravel用redis保存session遇到的坑, 配置redis存储session流程是这样的 在.evn文件中把session驱动和连接改为了redis的 如下: SESSION_DRIVER ...
- shell 计算时间差
#!/bin/bash #date_5='awk 'BEGIN{print strftime("%H:%M",(systime()-300))}'' #ps -ef | grep ...
- JasperReport学习札记6-JRXML的标签
原文源于:http://langhua9527.iteye.com/blog/402317 JasperReport学习笔记6-JRXML的标签1.<jasperReport>根元素包括很 ...
- PreviewRenderUtility的Example
用PreviewRenderUtility就不用自己再去创建摄像机来做模型在Editor下的预览了 需要注意,默认是用场景天空盒和场景灯光.参考ShaderForge编辑器的做法,配置自定义灯光 这些 ...
- 关于docker容器和镜像的区别
docker的整个生命周期有三部分组成:镜像(image)+容器(container)+仓库(repository): 如下图所示,容器是由镜像实例化而来,这和我们学习的面向对象的概念十分相似,我们可 ...
- LeetCode——4Sum & 总结
LeetCode--4Sum & 总结 前言 有人对 Leetcode 上 2Sum,3Sum,4Sum,K Sum问题作了总结: http://blog.csdn.net/nanjunxia ...