Leetcode: Pow(x, n) and Summary: 负数补码总结
Implement pow(x, n).
Analysis: Time Complexity: O(LogN)
Iterative code: refer to https://discuss.leetcode.com/topic/40546/iterative-log-n-solution-with-clear-explanation
N = 9 = 2^3 + 2^0 = 1001 in binary. Then:
x^9 = x^(2^3) * x^(2^0)
We can see that every time we encounter a 1 in the binary representation of N, we need to multiply the answer with x^(2^i) where i is the ith bit of the exponent. Thus, we can keep a running total of repeatedly squaring x - (x, x^2, x^4, x^8, etc) and multiply it by the answer when we see a 1.
public class Solution {
public double MyPow(double x, int n) {
double ans = 1;
long absN = Math.Abs((long)n);
while(absN > 0) {
if((absN&1)==1) ans *= x;
absN >>= 1;
x *= x;
}
return n < 0 ? 1/ans : ans;
}
}
Recursive code:
double pow(double x, int n) {
if (n == 0) return 1.0;
double half = pow(x, n/2);
if (n%2 == 0)
{
return half*half;
}
else if (n>0)
{
return half*half*x;
}
else
{
return half/x*half;
}
}
这道题其实细细玩味起来有不少值得注意的地方:位运算的细节。
我第一遍代码里面其实有不妥的地方,比如第4行的1/helper(x, -n),当n取Integer.MIN_VALUE时,取反结果还是自己
JAVA中整数采用符号二进制补码表示(Two's Complement),补码对正数没什么好说的,但对负数还是要注意。
比如:
-8 1000 -4 1100 0 0000 4 0100
-7 1001 -3 1101 1 0001 5 0101
-6 1010 -2 1110 2 0010 6 0110
-5 1011 -1 1111 3 0011 7 0111
一旦某一端overflow, 就会跑到另外一端去wrap up,这就是为什么Integer.MAX_VALUE+1 会是Integer.MIN_VALUE
Integer.MIN_VALUE,即-2147483648,二进制位如下:
1000 0000 0000 0000 0000 0000 0000 0000
在计算机的运算中,“-”(前缀)运算表示各二制位取反再加1,也就是说 b = -a 在计算机内部是 b = ~a + 1 这样处理的,所以上面的位就变成了:
1000 0000 0000 0000 0000 0000 0000 0000 Integer.MIN_VALUE
取反 0111 1111 1111 1111 1111 1111 1111 1111 (取反之后变成了Integer.MAX_VALUE)
加1 1000 0000 0000 0000 0000 0000 0000 0000 -Integer.MIN_VALUE(与原来的结果一样)
这就导致了我如下的一段code stackoverflow了
public class Solution {
public double pow(double x, int n) {
if (n < 0) return 1/pow(x, Math.abs(n));
if (n == 0) return 1.0;
else {
double half = pow(x, n/2);
if (n % 2 == 0) return half * half;
else return half * half * x;
}
}
}
java.lang.StackOverflowError last input: 1.00000, -2147483648, 因为-2147483648取反永远是自己,好像0取反永远是自己一样。我第一遍的code也只是侥幸结果对,其实并不好。还是像第二遍code那样写比较好
Leetcode: Pow(x, n) and Summary: 负数补码总结的更多相关文章
- [LeetCode] Pow(x, n) 求x的n次方
Implement pow(x, n). 这道题让我们求x的n次方,如果我们只是简单的用个for循环让x乘以自己n次的话,未免也把LeetCode上的想的太简单了,一句话形容图样图森破啊.OJ因超时无 ...
- LeetCode: pow
Title: https://leetcode.com/problems/powx-n/ 思路:二分.使用递归或者非递归.非递归有点难理解.pow(0,0)=1 递归的方法是将n为负数的用除法解决.有 ...
- leetcode pow(x,n)实现
题目描述: 自己实现pow(double x, int n)方法 实现思路: 考虑位运算.考虑n的二进制表示形式,以n=51(110011)为例,x^51 = x^1*x^2*x^16*x^32,因此 ...
- [LeetCode] Pow(x, n)
Implement pow(x, n). 有史以来做过最简单的一题,大概用5分钟ac,我采用fast exponential,这个在sicp的第一章就有描述.思想是:如果n是偶数的话,那么m^n = ...
- Leetcode: Number of Islands II && Summary of Union Find
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- leetcode Pow(doubule x,int n)
今天第一天开通博客,心情还是小激动的 上代码: 方法一:常规递归,x的n次方={xn/2*xn/2 //n为偶 xn/2*xn/2 *x //n为奇数 } ...
- [leetcode]Pow(x, n) @ Python
原题地址:https://oj.leetcode.com/problems/powx-n/ 题意:Implement pow(x, n). 解题思路:求幂函数的实现.使用递归,类似于二分的思路,解法来 ...
- LeetCode: Pow(x, n) 解题报告
Pow(x, n) Implement pow(x, n). SOLUTION 1: 使用二分法. 1. 负数的情况,使用以下的公式转化为求正数power,另外,考虑到MIN_VALUE可能会造成越界 ...
- 剑指offer-int类型负数补码中1的个数-位操作
在java中Interger类型表示的最大数是 System.out.println(Integer.MAX_VALUE);//打印最大整数:2147483647 这个最大整数的二进制表示,头部少了一 ...
随机推荐
- hihoCoder挑战赛28 题目2 : 二进制翻转
题目2 : 二进制翻转 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 定义函数 Rev(x) 表示把 x 在二进制表示下翻转后的值 例如: Rev(4)=1,因为 4 ...
- 熟悉使用ConfigParser库读写配置文件
Python的配置文件 配置文件 setting.ini文件是一个纯文本 [DataBase1] username = admin passwors = root [DataBase2] hostna ...
- 安装cnpm
使用淘宝镜像的cnpm $ npm install -g cnpm --registry=https://registry.npm.taobao.org
- Java虚拟机九 java.lang.String在虚拟机中的实现
在Java中,Java的设计者对String对象进行了大量的优化,主要有三个特点: 1.不变性: 不变性是指String对象一旦生成,则不能再对它进行改变.String的这个特点可以泛化成不变(imm ...
- Windows Mysql binlog 数据恢复
show variables like 'log_bin%'; 可以看到Mysql binlog为关闭状态,那我们去更改为开启状态
- 慕课学习--DNS的作用
因为相对于32位的IP地址,人对域名更加敏感,也更容易记忆.所以一般都是把IP地址转化为域名进行网页的访问. DNS(Domain Name System,域名系统),万维网上作为域名和IP地址相互映 ...
- POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...
- initrd和initramfs的区别
Linux内核在初始化之后会执行init进程,而init进程会挂载我们的根文件系统,但由于init程序也是在根文件系统上的,所以这就有了悖论.Linux采用两步走的方法来解决这个问题.Linux2 ...
- Iwconfig/aircrack-ng
BT5 aircrack-ng破解无线密码(wpa/wep) - 星明月稀 - 博客频道 - CSDN.NET BT5 aircrack-ng破解无线密码(wpa/wep) - ...
- 数据库之char vchar nchar nvchar的区别
转自:http://blog.csdn.net/a11112244444/article/details/51475107 首先介绍一下定长或变长 所谓定长就是长度固定的,当输入的数据长度没有达到指定 ...