[Scikit-learn] 1.4 Support Vector Machines - Linear Classification
SVM算法
- 既可用于回归问题,比如SVR(Support Vector Regression,支持向量回归)
- 也可以用于分类问题,比如SVC(Support Vector Classification,支持向量分类)
这里简单介绍下SVR:https://scikit-learn.org/stable/modules/svm.html#svm-regression
SVM解决回归问题
一、原理示范
Ref: 支持向量机 svc svr svm
感觉不是很好的样子,没有 Bayesian Linear Regression的效果好;但其实也是取决于“核”的选取。
二、代码示范
print(__doc__) import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt # #############################################################################
# Generate sample data
X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel() # #############################################################################
# Add noise to targets
y[::5] += 3 * (0.5 - np.random.rand(8)) # #############################################################################
# Fit regression model
svr_rbf = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1)
svr_lin = SVR(kernel='linear', C=100, gamma='auto')
svr_poly = SVR(kernel='poly', C=100, gamma='auto', degree=3, epsilon=.1,
coef0=1) # #############################################################################
# Look at the results
lw = 2 svrs = [svr_rbf, svr_lin, svr_poly]
kernel_label = ['RBF', 'Linear', 'Polynomial']
model_color = ['m', 'c', 'g'] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 10), sharey=True)
for ix, svr in enumerate(svrs):
axes[ix].plot(X, svr.fit(X, y).predict(X), color=model_color[ix], lw=lw,
label='{} model'.format(kernel_label[ix]))
axes[ix].scatter(X[svr.support_], y[svr.support_], facecolor="none",
edgecolor=model_color[ix], s=50,
label='{} support vectors'.format(kernel_label[ix]))
axes[ix].scatter(X[np.setdiff1d(np.arange(len(X)), svr.support_)],
y[np.setdiff1d(np.arange(len(X)), svr.support_)],
facecolor="none", edgecolor="k", s=50,
label='other training data')
axes[ix].legend(loc='upper center', bbox_to_anchor=(0.5, 1.1),
ncol=1, fancybox=True, shadow=True) fig.text(0.5, 0.04, 'data', ha='center', va='center')
fig.text(0.06, 0.5, 'target', ha='center', va='center', rotation='vertical')
fig.suptitle("Support Vector Regression", fontsize=14)
plt.show()
可见,RBF有了径向基中“贝叶斯概率”的特性,跟容易找到数据趋势的主体。
实践出真知
Ref: SVM: 实际中使用SVM的一些问题
一、核的选择
如果features的范围差别不大。
- 一种选择是不使用kernel(也称为linear kernel),直接使用x: 这种情况是当我们的n很大(即维度很高,features很多)但是训练样本却很少的情况下,我们一般不希望画出很复杂的边界线 (因为样本很少,画出很复杂的边界线就会过拟合),而是用线性的边界线。
- 一种选择是使用Gaussian kernel: 这种情况需要确定σ2(平衡bias还是variance)。这种情况是当x的维度不高,但是样本集很多的情况下。如上图中,n=2,但是m却很多,需要一个类似于圆的边界线。(即需要一个复杂的边界)
二、默塞尔定理
如果features的范围差别很大,在执行kernel之前要使用feature scaling。
我们最常用的是 高斯kernel 和 linear kernel (即不使用kernel),但是需要注意的是不是任何相似度函数都是有效的核函数,它们(包括我们常使用的高斯kernel)需要满足一个定理(默塞尔定理),这是因为SVM有很多数值优化技巧,为了有效地求解参数Θ,需要相似度函数满足默塞尔定理,这样才能确保SVM包能够使用优化的方法来求解参数Θ。
三、LR / SVM / DNN 比较
我们将logistic regression的cost function进行了修改得出了SVM,那么我们在什么情况下应该使用什么算法呢?
【量少】如果我们的features要比样本数要大的话(如n=10000 (维度),m=10-1000 (样本量)),我们使用logistic regression或者linear kernel,因为在样本较少的情况下,我们使用线性分类效果已经很好了,我们没有足够多的样本来支持我们进行复杂的分类。
【适量】如果n(维度)较小,m(样本量)大小适中的话,使用SVM with Gaussion kernel.如我们之前讲的有一个二维(n=2)的数据集,我们可以使用高斯核函数很好的将正负区分出来.
【量多】如果n(维度)较小,m(样本量)非常庞大的话,会创建一些features,然后再使用logistic regeression 或者linear kernel。因为当m非常大的话,使用高斯核函数会较慢。
logistic regeression 与linear kernel是非常相似的算法,如果其中一个适合运行的话,那么另一个也很有可能适合运行。
我们使用高斯kernel的范围很大,当m多达50000,n在1-1000(很常见的范围),都可以使用SVM with 高斯kernel,可以解决很多logistic regression不能解决的问题。
神经网络在任何情况下都适用,但是有一个缺点是它训练起来比较慢,相对于SVM来说
SVM求的不是局部最优解,而是全局最优解
相对于使用哪种算法来说,我们更重要的是
- 掌握更多的数据,
- 如何调试算法(bias/variance),
- 如何设计新的特征变量,
这些都比是使用SVM还是logistic regression重要。
但是SVM是一种被广泛使用的算法,并且在某个范围内,它的效率非常高,是一种有效地学习复杂的非线性问题的学习算法。
logistic regression,神经网络,SVM这三个学习算法使得我们可以解决很多前沿的机器学习问题。
End.
[Scikit-learn] 1.4 Support Vector Machines - Linear Classification的更多相关文章
- Support Vector Machines for classification
Support Vector Machines for classification To whet your appetite for support vector machines, here’s ...
- Introduction to One-class Support Vector Machines
Traditionally, many classification problems try to solve the two or multi-class situation. The goal ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 12—Support Vector Machines 支持向量机
Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machi ...
- 【Supervised Learning】支持向量机SVM (to explain Support Vector Machines (SVM) like I am a 5 year old )
Support Vector Machines 引言 内核方法是模式分析中非常有用的算法,其中最著名的一个是支持向量机SVM 工程师在于合理使用你所拥有的toolkit 相关代码 sklearn-SV ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines
本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...
- [C7] 支持向量机(Support Vector Machines) (待整理)
支持向量机(Support Vector Machines) 优化目标(Optimization Objective) 到目前为止,你已经见过一系列不同的学习算法.在监督学习中,许多学习算法的性能都非 ...
- Machine Learning - 第7周(Support Vector Machines)
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...
- Ng第十二课:支持向量机(Support Vector Machines)(三)
11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规 ...
- Andrew Ng机器学习编程作业:Support Vector Machines
作业: machine-learning-ex6 1. 支持向量机(Support Vector Machines) 在这节,我们将使用支持向量机来处理二维数据.通过实验将会帮助我们获得一个直观感受S ...
随机推荐
- CPP_const&static
const 1. 定义本地常量,替换宏.#define LENGHTH 16static const int LENGHTH = 16;2. const出现在星号左边,表示被指物是常量:const出现 ...
- python -修改文件中某一行
写代码写错了顺序,所以想办法把x,y坐标调换回来 def change_ptsxy(fileName): fp = open(fileName) i = file_data = "" ...
- 微软开放了.NET 4.5.1的源代码
您目前处于: InfoQ首页 新闻 微软开放了.NET 4.5.1的源代码 微软开放了.NET 4.5.1的源代码 作者 姚琪琳 发布于 二月 26, 2014 | 1 讨论 新浪微博腾讯微博豆瓣 ...
- idea破解,idea激活,使用破解补丁无需注册码
dea激活,JetBrain旗下软件激活 前言 idea激活有多种方式,网上较多的是使用注册码或者填License server网址,目前(2017年8月19日)使用注册码的方式,亲测可用的只有lan ...
- 【Centos】systemd入门教程
systemd使用教程 常用指令 运行一个服务: systemctl start <服务名> 关闭一个服务: systemctl stop <服务名> 重启一个服务: syst ...
- applicationContext.xml报错org.springframework.orm.hibernate3.LocalSessionFactoryBean not found
applicationContext.xml报错org.springframework.orm.hibernate3.LocalSessionFactoryBean not found 解决办法: 1 ...
- e804. 显示JProgressBar的完成百分率
The progress bar offers the ability to display the actual value of the bar as a percentage. This exa ...
- Java调试那点事[转]
转自云栖社区:https://yq.aliyun.com/articles/56?spm=5176.100239.blogcont59193.11.jOh3ZG# 摘要: 该文章来自于阿里巴巴技术协会 ...
- eclipse debug 执行到断点处并没有停下,断点无效问题
转自:http://blog.csdn.net/cuidiwhere/article/details/14434439 现象: 利用eclipse debug时,执行到断点处并没有停下.正常情况下,在 ...
- spring mvc实现自定义注解
实现方式:使用@Aspect实现: 1. 新建注解接口:CheckSign package com.soeasy.web.utils; import org.springframework.core. ...