文本相似度-BM25算法
BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document, regardless of the inter-relationship between the query terms within a document (e.g., their relative proximity). It is not a single function, but actually a whole family of scoring functions, with slightly different components and parameters. One of the most prominent instantiations of the function is as follows.
BM25算法,通常用来作搜索相关性平分。一句话概况其主要思想:对Query进行语素解析,生成语素qi;然后,对于每个搜索结果D,计算每个语素qi与D的相关性得分,最后,将qi相对于D的相关性得分进行加权求和,从而得到Query与D的相关性得分。
BM25算法的一般性公式如下:
其中,Q表示Query,qi表示Q解析之后的一个语素(对中文而言,我们可以把对Query的分词作为语素分析,每个词看成语素qi。);d表示一个搜索结果文档;Wi表示语素qi的权重;R(qi,d)表示语素qi与文档d的相关性得分。
下面我们来看如何定义Wi。判断一个词与一个文档的相关性的权重,方法有多种,较常用的是IDF。这里以IDF为例,公式如下:
其中,N为索引中的全部文档数,n(qi)为包含了qi的文档数。
根据IDF的定义可以看出,对于给定的文档集合,包含了qi的文档数越多,qi的权重则越低。也就是说,当很多文档都包含了qi时,qi的区分度就不高,因此使用qi来判断相关性时的重要度就较低。
我们再来看语素qi与文档d的相关性得分R(qi,d)。首先来看BM25中相关性得分的一般形式:
其中,k1,k2,b为调节因子,通常根据经验设置,一般k1=2,b=0.75;fi为qi在d中的出现频率,qfi为qi在Query中的出现频率。dl为文档d的长度,avgdl为所有文档的平均长度。由于绝大部分情况下,qi在Query中只会出现一次,即qfi=1,因此公式可以简化为:
从K的定义中可以看到,参数b的作用是调整文档长度对相关性影响的大小。b越大,文档长度的对相关性得分的影响越大,反之越小。而文档的相对长度越长,K值将越大,则相关性得分会越小。这可以理解为,当文档较长时,包含qi的机会越大,因此,同等fi的情况下,长文档与qi的相关性应该比短文档与qi的相关性弱。
综上,BM25算法的相关性得分公式可总结为:
从BM25的公式可以看到,通过使用不同的语素分析方法、语素权重判定方法,以及语素与文档的相关性判定方法,我们可以衍生出不同的搜索相关性得分计算方法,这就为我们设计算法提供了较大的灵活性。
原文地址:http://ipie.blogbus.com/logs/104136815.html
文本相似度-BM25算法的更多相关文章
- 从0到1,了解NLP中的文本相似度
本文由云+社区发表 作者:netkiddy 导语 AI在2018年应该是互联网界最火的名词,没有之一.时间来到了9102年,也是项目相关,涉及到了一些AI写作相关的功能,为客户生成一些素材文章.但是, ...
- 【NLP】Python实例:基于文本相似度对申报项目进行查重设计
Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起 ...
- 文本相似度 — TF-IDF和BM25算法
1,$TF-IDF$算法 $TF$是指归一化后的词频,$IDF$是指逆文档频率.给定一个文档集合$D$,有$d_1, d_2, d_3, ......, d_n \in D$.文档集合总共包含$m$个 ...
- 文本相似度算法——空间向量模型的余弦算法和TF-IDF
1.信息检索中的重要发明TF-IDF TF-IDF是一种统计方法,TF-IDF的主要思想是,如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分 ...
- 4. 文本相似度计算-CNN-DSSM算法
1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 之前介绍了DSSM算法,它主要是用了DN ...
- 3. 文本相似度计算-DSSM算法
1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 最近在学习文本相似度的计算,前面两篇文章 ...
- 文本相似度 余弦值相似度算法 VS L氏编辑距离(动态规划)
设置n为字符串s的长度.("我是个小仙女") 设置m为字符串t的长度.("我不是个小仙女") 如果n等于0,返回m并退出.如果m等于0,返回n并退出.构造两个向 ...
- DSSM算法-计算文本相似度
转载请注明出处: http://blog.csdn.net/u013074302/article/details/76422551 导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下quer ...
- Finding Similar Items 文本相似度计算的算法——机器学习、词向量空间cosine、NLTK、diff、Levenshtein距离
http://infolab.stanford.edu/~ullman/mmds/ch3.pdf 汇总于此 还有这本书 http://www-nlp.stanford.edu/IR-book/ 里面有 ...
随机推荐
- 二分法(折半查找法)小demo
使用此算法,必须有一个前提,那就是数组必须是有序的. package com.ly.tcwireless.international.test; import org.junit.Test; publ ...
- Android笔记(一):this 的表示范围和 Context
this 的表示范围 this 指的是它所在的直接所在的类. 例如: public class MyClass{ int num; public MyClass(int num){ this.num ...
- 強大的jQuery Chart组件-Highcharts
Highcharts是一个制作图表的纯Javascript类库,主要特性如下: 兼容性:兼容当今所有的浏览器,包括iPhone.IE和火狐等等: 对个人用户完全免费: 纯JS,无BS: 支持大部分的图 ...
- 使用Puppeteer进行数据抓取(二)——Page对象
page对象是puppeteer最常用的对象,它可以认为是chrome的一个tab页,主要的页面操作都是通过它进行的.Google的官方文档详细介绍了page对象的使用,这里我只是简单的小结一下. 客 ...
- android依据区域高度切割文本问题
android字体显示涉及例如以下參数:1. 基准点是baseline:2. Ascent是baseline之上至字符最高处的距离:3. Descent是baseline之下至字符最低处的距离.4. ...
- LPC-LINK 2 Board IO
- DMA Stream/Channel Outputting via GPIOC[0..7]
Ok, so quickly mashing up another example using a different TIM, DMA Stream/Channel for illustration ...
- HDU4607(求树中的最长链)
题目:Park Visit 题意:给定一棵树,从树中的任意选一个顶点出发,遍历K个点的最短距离是多少?(每条边的长度为1) 解析:就是求树的最长链,假设求出的树的最长链所包含的点数为m,那么如果K&l ...
- php开发之命名规则
类命名 1.使用大写的字母作为词的切割,其它字母均使用小写字母 2.名字的首字母使用大写字母 3.不要使用下划线"_" 类属性的命名 1.属性的命名应该以'm'为前缀 2.前缀'm ...
- UVA 303 Pipe
点击打开链接 题意: 求光线能达到的最大横坐标 注意光线可以和管道重合 也可以经过转折点 解法: 枚举每种光线是否能通过每个转折点的截面(线段)即可 //大白p263 #include <cma ...