今天主要来谈谈如何将Spark计算的结果写入到Mysql或者其他的关系型数据库里面。其实方式也很简单,代码如下:

package scala

import java.sql.{DriverManager, PreparedStatement, Connection}
import org.apache.spark.{SparkContext, SparkConf} object RDDtoMysql { case class Blog(name: String, count: Int) def myFun(iterator: Iterator[(String, Int)]): Unit = {
var conn: Connection = null
var ps: PreparedStatement = null
val sql = "insert into blog(name, count) values (?, ?)"
try {
conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/spark",
    "root", "")
iterator.foreach(data => {
ps = conn.prepareStatement(sql)
ps.setString(, data._1)
ps.setInt(, data._2)
ps.executeUpdate()
}
)
} catch {
case e: Exception => println("Mysql Exception")
} finally {
if (ps != null) {
ps.close()
}
if (conn != null) {
conn.close()
}
}
} def main(args: Array[String]) {
val conf = new SparkConf().setAppName("RDDToMysql").setMaster("local")
val sc = new SparkContext(conf)
val data = sc.parallelize(List(("www", ), ("iteblog", ), ("com", )))
data.foreachPartition(myFun)
}
}

其实是通过foreachPartition遍历RDD的每个分区,并调用普通的Scala方法来写数据库。在运行程序之前需要确保数据库里面存在blog表,可以通过下面语句创建:

CREATE TABLE `blog` (
`name` varchar() NOT NULL,
`count` int() unsigned DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf-

然后直接运行上述的代码即可。运行完成你就可以在数据库里面查询结果:

SELECT * FROM blog b;
www  
iteblog  
com  

需要注意的是:
  1、你最好使用foreachPartition 函数来遍历RDD,并且在每台Work上面创建数据库的connection。
  2、如果你的数据库并发受限,可以通过控制数据的分区来减少并发。
  3、在插入Mysql的时候最好使用批量插入。
  4、确保你写入数据库过程能够处理失败,因为你插入数据库的过程可能会经过网络,这可能会导致数据插入到数据库失败。
  5、不建议将你的RDD数据写入到Mysql等关系型数据库中。

Spark将计算结果写入到Mysql中的更多相关文章

  1. spark读取mongodb数据写入hive表中

    一 环境: spark-: hive-; scala-; hadoop--cdh-; jdk-1.8; mongodb-2.4.10; 二.数据情况: MongoDB数据格式{    "_i ...

  2. spark streaming将处理结果存入mysql中(使用c3p0连接池)

    1.c3p0相应的架包导入工程中 将以下四个架包导入工程, 主要有三个架包:c3p0-0.9.5.2.jar c3p0-oracle-thin-extras-0.9.5.2.jar mchange-c ...

  3. Spark操作dataFrame进行写入mysql,自定义sql的方式

    业务场景: 现在项目中需要通过对spark对原始数据进行计算,然后将计算结果写入到mysql中,但是在写入的时候有个限制: 1.mysql中的目标表事先已经存在,并且当中存在主键,自增长的键id 2. ...

  4. 通过Spark Streaming的foreachRDD把处理后的数据写入外部存储系统中

    转载自:http://blog.csdn.net/erfucun/article/details/52312682 本博文主要内容包括: 技术实现foreachRDD与foreachPartition ...

  5. NET MVC全局异常处理(一) 【转载】网站遭遇DDoS攻击怎么办 使用 HttpRequester 更方便的发起 HTTP 请求 C#文件流。 Url的Base64编码以及解码 C#计算字符串长度,汉字算两个字符 2019周笔记(2.18-2.23) Mysql语句中当前时间不能直接使用C#中的Date.Now传输 Mysql中Count函数的正确使用

    NET MVC全局异常处理(一)   目录 .NET MVC全局异常处理 IIS配置 静态错误页配置 .NET错误页配置 程序设置 全局异常配置 .NET MVC全局异常处理 一直知道有.NET有相关 ...

  6. Spark使用Java、Scala 读取mysql、json、csv数据以及写入操作

    Spark使用Java读取mysql数据和保存数据到mysql 一.pom.xml 二.spark代码 2.1 Java方式 2.2 Scala方式 三.写入数据到mysql中 四.DataFrame ...

  7. flink04 -----1 kafkaSource 2. kafkaSource的偏移量的存储位置 3 将kafka中的数据写入redis中去 4 将kafka中的数据写入mysql中去

    1. kafkaSource 见官方文档 2. kafkaSource的偏移量的存储位置 默认存在kafka的特殊topic中,但也可以设置参数让其不存在kafka的特殊topic中   3   将k ...

  8. mysql中计算两个日期的时间差函数TIMESTAMPDIFF用法

    mysql中计算两个日期的时间差函数TIMESTAMPDIFF用法: 语法: TIMESTAMPDIFF(interval,datetime_expr1,datetime_expr2) 说明: 返回日 ...

  9. Spark比MR快是因为在内存中计算?错!

    MapReduce 就像一台又慢又稳的老爷车,虽然距离 MapReduce 面市到现在已经过去了十几年的时间,但它始终没有被淘汰,任由大数据技术日新月异.蓬蓬勃勃.花里胡哨地发展,这个生态圈始终有它的 ...

随机推荐

  1. WP8.1学习系列(第十七章)——Windows Phone重要图形、视觉指示器和通知

    美感在手机应用中是不可或缺的,它是直观操作的代名词.在 Windows Phone 中,你的磁贴.初始屏幕.图标.控件和导航的视觉元素会引起用户对应用程序内的相关任务.优先事项或操作的注意,并采用新颖 ...

  2. gulp生成发布包脚本

    var formPost = require('./tools/submit.js');var gulp = require('gulp'), zip = require('gulp-zip'), h ...

  3. wireshark和RawCap跟踪并解决中文乱码问题

    一.问题概述 说下程序的架构. 有个后台管理系统A,在页面修改数据后,会用httpClient发http请求给系统B: 系统B做了异步机制,收到A发的请求后,将数据封装为Mq消息发给RabbitMq, ...

  4. 用Android Studio导出jar给Unity3D用

    1.新建一个Android Studio工程,选择空Activity 2.创建一个Module 3.将Unity的依赖jar包拷贝到工程的libs下 4.增加Java代码 内容修改如下 package ...

  5. 利用n和nvm管理Node的版本

    写在前面 Node版本的迭代速度很快,版本很多(横跨0.6到0.11),升级Node版本成为了一个问题.目前有n和nvm这两个工具可以对Node进行无痛升级,本文简单介绍一下二者的使用. n n是No ...

  6. vue--获取监听获取radius的改变

    做一个考试系统,单选题都是后台来的数据,所以一时间没有想到 @change这个方法: <template> <div id="Home"> <v-he ...

  7. Elasticsearch 自定义映射

    尽管在很多情况下基本域数据类型 已经够用,但你经常需要为单独域自定义映射 ,特别是字符串域.自定义映射允许你执行下面的操作: 全文字符串域和精确值字符串域的区别 使用特定语言分析器 优化域以适应部分匹 ...

  8. Python中常用包——sklearn主要模块和基本使用方法

    在从事数据科学的人中,最常用的工具就是R和Python了,每个工具都有其利弊,但是Python在各方面都相对胜出一些,这是因为scikit-learn库实现了很多机器学习算法. 加载数据(Data L ...

  9. mysql max(),min()的优化

    Select tables optimized away(选择表优化)

  10. 地址转换函数:inet_aton & inet_ntoa & inet_addr和inet_pton & inet_ntop

    在Unix网络编程中,我们常用到地址转换函数,它将ASCII字符串(如"206.62.226.33")与网络字节序的二进制值(这个值保存在套接口地址结构中)间进行地址的转换. 1. ...