BZOJ1304: [CQOI2009]叶子的染色 树形dp
Description
给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根、内部结点和叶子均可)着以黑色或白色。你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点(哪怕是这个叶子本身)。 对于每个叶结点u,定义c[u]为从根结点从U的简单路径上最后一个有色结点的颜色。给出每个c[u]的值,设计着色方案,使得着色结点的个数尽量少。
Input
第一行包含两个正整数m, n,其中n是叶子的个数,m是结点总数。结点编号为1,2,…,m,其中编号1,2,… ,n是叶子。以下n行每行一个0或1的整数(0表示黑色,1表示白色),依次为c[1],c[2],…,c[n]。以下m-1行每行两个整数a,b(1<=a < b <= m),表示结点a和b 有边相连。
Output
仅一个数,即着色结点数的最小值。
Sample Input
0
1
0
1 4
2 5
4 5
3 5
Sample Output
HINT
M<=10000
N<=5021
Solution
这题只要知道结论就很好做了
然而是神仙结论:选择任何一个点为根对答案没有任何影响(不会证)
所以直接随便选个点当根然后树形dp就可以了
$f[u][0]$和$f[u][1]$表示$u$的子树中,最后一个点想要得到一个白色/黑色的祖先,的最小代价
#include <bits/stdc++.h> using namespace std ; #define N 100010
#define inf 0x3f3f3f3f int n , m ;
int c[ N ] ;
int f[ N ][ ] ;
int head[ N ] , cnt ;
int fa[ N ] ;
struct node {
int to , nxt ;
} e[ N ] ; void ins( int u , int v ) {
e[ ++ cnt ].to = v ;
e[ cnt ].nxt = head[ u ] ;
head[ u ] = cnt ;
} void dfs( int u ) {
if( u <= n ) {
f[ u ][ c[ u ] ] = ;
f[ u ][ c[ u ] ^ ] = inf ;
}
for( int i = head[ u ] ; i ; i = e[ i ].nxt ) {
if( e[ i ].to == fa[ u ] ) continue ;
fa[ e[ i ].to ] = u ;
dfs( e[ i ].to ) ;
f[ u ][ ] += min( f[ e[ i ].to ][ ] , f[ e[ i ].to ][ ] + ) ;
f[ u ][ ] += min( f[ e[ i ].to ][ ] + , f[ e[ i ].to ][ ] ) ;
}
} int main() {
scanf( "%d%d" , &m , &n ) ;
for( int i = ; i <= n ; i ++ ) {
scanf( "%d" , &c[ i ] ) ;
}
for( int i = , a , b ; i < m ; i ++ ) {
scanf( "%d%d" , &a , &b ) ;
ins( a , b ) ; ins( b , a ) ;
}
dfs( m ) ;
printf( "%d\n" , min( f[ m ][ ] , f[ m ][ ] ) + ) ;
return ;
}
BZOJ1304: [CQOI2009]叶子的染色 树形dp的更多相关文章
- 【bzoj1304】[CQOI2009]叶子的染色 树形dp
题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...
- BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...
- BZOJ1304 CQOI2009 叶子的染色 【树形DP】
BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...
- 【树形dp】bzoj1304: [CQOI2009]叶子的染色
又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...
- BZOJ1304: [CQOI2009]叶子的染色
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1304 树形dp. 可以发现其实根选在哪里都是没有问题的. f[u][0],f[u][1],f[ ...
- BZOJ1304 CQOI2009叶子的染色(树形dp)
令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...
- BZOJ_1304_[CQOI2009]叶子的染色_树形DP
BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...
- 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)
[BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...
- BZOJ 1304: [CQOI2009]叶子的染色
1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 566 Solved: 358[Submit][Statu ...
随机推荐
- android studio 1
1.继承activity类的时候,重写父类 @Override //伪代码 ,代表如果不是重写父类的方法,该地方会报错 protected void onCreate( Bundle savedI ...
- 论存储IOPS和Throughput吞吐量之间的关系
论存储IOPS和Throughput吞吐量之间的关系 http://www.csdn.net/article/2015-01-14/2823552 IOPS和Throughput吞吐量两个参数是衡量存 ...
- [LeetCode] 605. Can Place Flowers_Easy
Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, ...
- cocos2dx-环境搭建和创建项目(mac用)
学习一门语言最快的方法就是制作一个简单的项目. 而要制作一个项目必须先搭好环境,即使花上2小时去熟悉环境创建也不算浪费.由于之后的项目会用到cocos2d-x 3.0,这里以3.0为例子(不同的版本写 ...
- yii的url写法
Yii 各种url地址写法 echo Url::home(); 生成入口地址/yii2test/frontend/web/index.php: echo Url::base();生成入口文件夹地址: ...
- OpenStack trove原理及配置实践
DBaaS是什么? 字面上理解数据库即是服务,简单来说就是以服务的形式为用户提供数据库服务. 在云平台上使用trove有什么优势? 简化IT操作流程,降低使用数据库使用门槛举个例子,曾经我搭建一个LA ...
- Java基础语法(基本语句)
Java基础语法 标识符在程序中自定义的一些名称.由26个英文字母大小写,数字:0-9符号:_&组成定义合法标识符规则:1. 数字不可以开头2. 不可以使用关键字Java中 ...
- Hive 数据类型转换
在Hive的日常使用中经常会遇到需要对字段进行数据类型转换的情况.Hive中的数据类型转换包括隐式转换(implicit conversions)和显式转换(explicitly conversion ...
- Yahoo数据仓库架构简介
1. Yahoo数据仓库的整体架构 Yahoo数据仓库在基础架构上由hadoop集群和Oracle集群组成,hadoop集群是一个计算平台,完成所有ETL数据处理过程:Oracle集群只是一个查询环境 ...
- ant编译无法依赖rt.jar
最近同事在用ant编译投产的时候报了一个错误: 程序包com.sun.org.apache.xml.internal.security.exceptions不存在 大致网上搜集了一下资源:具体原因是相 ...