【CF888G】Xor-MST Trie树(模拟最小生成树)
【CF888G】Xor-MST
题意:给你一张n个点的完全图,每个点有一个权值ai,i到j的边权使ai^aj,求这张图的最小生成树。
n<=200000,ai<2^30
题解:学到了求最小生成树的新姿势。
Boruvka算法:先对于每个点,选择在所有与之相连的边中,权值最小的边,并将这条边加入到最小生成树中。显然这样连出来的边会形成一个森林,并且连边后连通块个数至少减半。然后我们将每个连通块再看成一个点,重复以上算法即可。时间复杂度O(mlogn)。
对于本题,该如何优化呢?不难想到Trie树。我们很容易就能找到对于一个点,它与所有其它连通块中的点的连边中,权值最小的是哪个。然后这题就做完了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=200010;
ll ans;
int n,m,tot;
int to[maxn],val[maxn],rt[maxn],f[maxn],v[maxn],bel[maxn];
vector<int> p[2][maxn];
vector<int>::iterator it;
struct node
{
int ch[2],siz;
}s[maxn*61];
inline void insert(int &x,int z,int w)
{
if(!x) x=++tot;
int i,u=x,d;
for(i=29;~i;i--)
{
d=(w>>i)&1;
if(!s[u].ch[d]) s[u].ch[d]=++tot;
u=s[u].ch[d],s[u].siz++;
}
s[u].siz=z;
}
inline void query(int x,int y,int z,int w)
{
int i,d,ret=0;
for(i=29;~i;i--)
{
d=(w>>i)&1;
if(s[s[x].ch[d]].siz==s[s[y].ch[d]].siz) d^=1,ret|=(1<<i);
x=s[x].ch[d],y=s[y].ch[d];
}
if(ret<val[z]) val[z]=ret,to[z]=s[x].siz;
}
int find(int x)
{
return (f[x]==x)?x:(f[x]=find(f[x]));
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,d=0;
for(i=1;i<=n;i++) v[i]=rd();
sort(v+1,v+n+1);
for(i=1;i<=n;i++) if(i==1||v[i]>v[i-1]) p[0][++m].push_back(v[i]);
while(m>1)
{
n=m,m=0,memset(val,0x3f,sizeof(val[0])*(n+1)),memset(rt,0,sizeof(rt[0])*(n+1));
memset(s,0,sizeof(s[0])*(tot+1)),tot=0;
for(i=1;i<=n;i++) for(it=p[d][i].begin();it!=p[d][i].end();it++) insert(rt[i],i,*it),insert(rt[0],i,*it);
for(i=1;i<=n;i++) for(it=p[d][i].begin();it!=p[d][i].end();it++) query(rt[0],rt[i],i,*it);
for(i=1;i<=n;i++) p[d^1][i].clear(),f[i]=i;
for(i=1;i<=n;i++) if(find(to[i])!=find(i)) f[f[i]]=f[to[i]],ans+=val[i];
for(i=1;i<=n;i++) if(find(i)==i) bel[i]=++m;
for(i=1;i<=n;i++) for(it=p[d][i].begin();it!=p[d][i].end();it++) p[d^1][bel[f[i]]].push_back(*it);
d^=1;
}
printf("%I64d",ans);
return 0;
}
【CF888G】Xor-MST Trie树(模拟最小生成树)的更多相关文章
- usaco6.1-Cow XOR:trie树
Cow XOR Adrian Vladu -- 2005 Farmer John is stuck with another problem while feeding his cows. All o ...
- 【BZOJ4523】[Cqoi2016]路由表 Trie树模拟
[BZOJ4523][Cqoi2016]路由表 Description 路由表查找是路由器在转发IP报文时的重要环节.通常路由表中的表项由目的地址.掩码.下一跳(Next Hop)地址和其他辅助信息组 ...
- HDU 5269 ZYB loves Xor I Trie树
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5269 bc:http://bestcoder.hdu.edu.cn/contests/con ...
- hdu 4825 Xor Sum trie树
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Proble ...
- HDU4825 Xor Sum —— Trie树
题目链接:https://vjudge.net/problem/HDU-4825 Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- 【9.15校内测试】【寻找扩展可行域+特判】【Trie树 异或最小生成树】【模拟:)】
之前都没做出来的同名题简直留下心理阴影啊...其实这道题还是挺好想的QAQ 可以发现,鸟可以走到的点是如下图这样扩展的: 由$(0,0)$向两边扩展,黑色是可以扩展到的点,红色是不能扩展的点,可以推出 ...
- 【CF888G】Xor-MST(最小生成树,Trie树)
[CF888G]Xor-MST(最小生成树,Trie树) 题面 CF 洛谷 题解 利用\(Kruskal\)或者\(Prim\)算法都很不好计算. 然而我们还有一个叫啥来着?\(B\)啥啥的算法,就叫 ...
- cf888G. Xor-MST(Boruvka最小生成树 Trie树)
题意 题目链接 给出\(n\)点,每个点有一个点权\(a[i]\),相邻两点之间的边权为\(a[i] \oplus a[j]\),求最小生成树的值 Sol 非常interesting的一道题,我做过两 ...
- [CF888G] Xor-mst (Trie 树,最小生成树)
题目链接 Solution \(Trie\) 树 + 启发式合并. 考虑到是异或,于是按位贪心.让高位的尽量相同. 然后要计算每棵子树的代价,似乎并没有很好的方法?? 于是只能启发式合并. 对于每一个 ...
随机推荐
- SpringMVC工作原理详解
先来看一下什么是 MVC 模式 MVC 是一种设计模式. MVC 的原理图如下: SpringMVC 简单介绍 SpringMVC 框架是以请求为驱动,围绕 Servlet 设计,将请求发给控制器,然 ...
- ubuntu下安装程序的五种方法
在ubuntu当中,安装应用程序我所知道的有三种方法,分别是apt-get,dpkg安装deb和make install安装源码包三种.下面针对每一种方法各举例来说明. 一.apt-get方法 使用a ...
- 源码分析五(HashSet的内部实现)
一:首先来看看Hashset的继承体系 public class HashSet<E> extends AbstractSet<E> implements Set<E&g ...
- Java 代码块:静态代码块、构造代码块、构造函数块
Class : StaticFa package edu.bai.du.lime.staticCode; public class StaticFa { // 随着类的声明而执行 static { S ...
- 解压安装的tomcat, 使用chkconfig命令让tomcat 随机启动,tomcat 变为系统服务
使用解压安装的tomcat包,命令行输入 service tomcat start 会报 tomcat: unrecognized service 错误提示,意思是说系统没有找到该服务. 好了,我们现 ...
- Python中的类(中)
上一篇介绍了Python中类相关的一些基本点,本文看看Python中类的继承和__slots__属性. 继承 在Python中,同时支持单继承与多继承,一般语法如下: class SubClassNa ...
- Waf-Bypass-Learning
WAF Bypass 综合篇: WAF攻防研究之四个层次Bypass WAF Bypass WAF Cookbook - MayIKissYou My Waf Bypass Series Articl ...
- java.lang.IllegalArgumentException: No converter found for return value of type
原文地址: http://blog.csdn.net/linhaiguo/article/details/51554766 问题原因: 请求返回的数据无法转换,需要添加如下配置 解决方法: 1.在po ...
- 使用createprocess()创建进程打开其他文件方法
#include "stdafx.h"#include "windows.h"#include <iostream>#include "s ...
- (原创)使用mceusb设备,将lirc移植到android笔记
首先说一下大环境和总体步骤: 下载lirc 0.8.7源码,使用ubuntu的setup.sh,配置为mceusb的驱动,同时Compile tools for X-Windows选项去掉,生成con ...