当一个数的二进制表示中,0的个数大于或等于1的个数时,叫做RoundNumber。求从S到F两个数(包含)之间的RoundNumber个数。

这类题一般都是先求出0到N的个数,然后两个相减。

由于题目是考虑二进制中01的个数,当位数固定时,很方便计算。于是从位数方面解决问题。

设N表示成二进制的位数为len。把0到N分为两部分。

  -位数为[0,len-1]时,可以通过简单的排列组合计算出结果。

  -位数为len时,逐位进行分析。假设N是24,表示成二进制是1 1000,1的个数是2,len/2 =2。

   最高位一定是1,否则就不是len位了。

   第二位是1,如果第二位是0,则后面的三位可以有一个1,也可以没有1,RoundNumber就是C31 +C30 个。

   后面的位都是0,这时不能将其替换成1,从0变成1将会比N更大。

于是分两步就求助了0-N的个数。

中间有两个小问题。一个是组合数的计算,我是从kuangbin那里抄的递推写法。关于组合数的计算还要再学习一个,最近数学专题。。。

还有就是边界问题。

#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; unsigned int S,F;
int C[][]; void init()
{
C[][]=;
C[][]=;C[][]=;
for(int i=;i<;i++)
{
C[i][]=;
for(int j=;j<i;j++)
C[i][j]=C[i-][j-]+C[i-][j];
C[i][i]=;
}
} int getbit(unsigned int x)
{
for(int i=;i>=;i--)
{
if(x&(<<i)) return i+;
}
} int get1(unsigned int x)
{
int ans = ;
for(int i=;i>=;i--)
{
if(x&(<<i)) ans++;
}
return ans;
} unsigned int get0To1(unsigned int x)
{
int n = getbit(x);
int ans = ;
n--;
for(int i=;i<=n;i++)
{
if(i == ) continue;
int mx = i/;
for(int j=;j<mx;j++)
{
ans += C[i-][j];
}
}
return ans;
} int get0(unsigned int x)
{
int ans =;
if(x == ) return ;
for(int i=;i<;i++)
{
if((x&(<<i)) == ) ans++;
else return ans;
}
return ans;
} unsigned int get1ToX(unsigned int x)
{
int one = get1(x),n=getbit(x);
int mx = n/,ans=,cur=;
//printf("x=%d one=%d n=%d\n",x,one,n);
if(one <= mx) ans++;
for(int i=n-;i>=;i--)
{
if((x&(<<i)) == )
{
//printf("gg");
continue;
}
else
{
for(int j=;j<=mx-cur;j++)
{
ans += C[i][j];
}
cur++;
}
}
return ans;
} int main()
{
init();
while(~scanf("%d%d",&S,&F))
{
if(S > F) swap(S,F);
//printf("all1 S=%d F=%d\n",get0To1(S),get0To1(F));
//printf("toX S=%d F=%d\n",get1ToX(S),get1ToX(F));
int ans = (get0To1(F)+get1ToX(F)) - (get0To1(S)+get1ToX(S));
if(get1(S) <= getbit(S)/) ans++;
printf("%d\n",ans); }
}

还有就是边界问题了。

POJ3252-RoundNumbers-排列组合的更多相关文章

  1. 学习sql中的排列组合,在园子里搜着看于是。。。

    学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...

  2. .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)

    今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...

  3. 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  4. 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  5. 【原创】开源.NET排列组合组件KwCombinatorics使用(一)—组合生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  6. hdu1521 排列组合(指数型母函数)

    题意: 有n种物品,并且知道每种物品的数量ki.要求从中选出m件物品的排数.         (全题文末) 知识点: 普通母函数 指数型母函数:(用来求解多重集的排列问题) n个元素,其中a1,a2, ...

  7. [leetcode] 题型整理之排列组合

    一般用dfs来做 最简单的一种: 17. Letter Combinations of a Phone Number Given a digit string, return all possible ...

  8. 排列组合算法(PHP)

    用php实现的排列组合算法.使用递归算法,效率低,胜在简单易懂.可对付元素不多的情况. //从$input数组中取$m个数的组合算法 function comb($input, $m) { if($m ...

  9. iOS多线程中,队列和执行的排列组合结果分析

    本文是对以往学习的多线程中知识点的一个整理. 多线程中的队列有:串行队列,并发队列,全局队列,主队列. 执行的方法有:同步执行和异步执行.那么两两一组合会有哪些注意事项呢? 如果不是在董铂然博客园看到 ...

  10. leetcode-Combinations 复习复习排列组合

    Combinations 题意: 根据给定的n和k,生成从1到n范围内长度为k的排列组合 示例: n=4 k=2 [[1, 2], [1, 3], [1, 4], [2, 1], [2, 3], [2 ...

随机推荐

  1. POJ1845

    这还是一道综合了许多数论的知识点的,做完也涨了不少姿势 但还是因为约数和公式这个鬼东西去找了度娘 题意很简单,就是求\(A^B\)的约数之和\(mod\ 9901\). 但是这种题意越是简单的题目越是 ...

  2. 提升----你所不知道的JavaScript系列(3)

    很多编程语言在执行的时候都是自上而下执行,但实际上这种想法在JavaScript中并不完全正确, 有一种特殊情况会导致这个假设是错误的.来看看下面的代码, a = 2; var a; console. ...

  3. [开源 .NET 跨平台 Crawler 数据采集 爬虫框架: DotnetSpider] [三] 配置式爬虫

    [DotnetSpider 系列目录] 一.初衷与架构设计 二.基本使用 三.配置式爬虫 四.JSON数据解析与配置系统 五.如何做全站采集 上一篇介绍的基本的使用方式,自由度很高,但是编写的代码相对 ...

  4. Nagios监控系统部署(源码)

    1. 概述2. 部署Nagios2.1 创建Nagios用户组2.2 下载Nagios和Nagios-plugin源码2.3 编译安装3. 部署Nagios-plugin3.1 编译安装nagios- ...

  5. 关于Win10下IE11只能以管理员身份运行的处理方式

    今天无意间发现IE无法启动,后来研究发现只有用管理员身份运行才能打开,初步分析应该是用户权限的问题,在网上百度了一番,找到了处理的方法,在此分享一下 1.win+R 调出“运行”命令,输入“reged ...

  6. Centos下内网DNS主从环境部署记录

    一.DNS是什么?DNS(Domain Name System),即域名系统.它使用层次结构的命名系统,将域名和IP地址相互映射,形成一个分布式数据库系统. DNS采用C-S架构,服务器端工作在UDP ...

  7. PHP从入门到精通(六)

    PHP中的错误处理 1.PHP的错误级别:见表格.2.调整PHP错误报告级别:PHP中,调整错误报告级别的方式有两种: ①修改PHP.ini文件的配置项.a.会导致在当前服务器环境下所有PHP文件都受 ...

  8. 《Linux内核分析》期终总结

    作者:杨舒雯,原创作品转载请注明出处,<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 目录: 1.通过简 ...

  9. QT QProgressBar QProgressDialog 模态,位置设置,无边框,进度条样式

    一  关于模态设置 QProgressDialog可以设置模态(需要在new的时候传入parent),QProgressBar设置不好: 只有dialog可以设置模态,widget不能设置模态(QPr ...

  10. 『编程题全队』Beata阶段项目复审

    小组的名字和链接 优点 缺点,bug 报告(部分包括建议) 最终名次 想不出队名 1. 界面简洁大方2. 有搜索功能 1. 已经完成的活动缺了点提示界面2. 似乎界面有一点点卡顿目标实现:基本实现找到 ...