先约定几个记号:

  1. 定义用一个冒号加等号表示“:=”,
  2. 表达式全等用两个等号表示“==”,
  3. 归约意义上的相等用一个等号表示“=”,“==”蕴涵“=”。

由于lambda演算不能定义符号,所以像这样的递归定义是不能被求值的:

f := (lambda () (f))

如何在lambda验算中实现递归?从最简单的递归函数开始。希望能带来一些启发。

寻找 \(\Omega\)

首先,我们的目标是找出一个无限循环的lambda表达式。另外额外要求这个表达式最短。

一个lambda表达式只可能有三种形式:

  1. 符号(x, y, z等等),
  2. 函数(如(lambda (x) x)),
  3. 应用(英文application,即函数调用,如调用函数func,参数x写作:(func x))。

第1、2种形式又称为值(value),因为他们不能被归约了。一个无限循环的表达式只能是第3种形式:

(exp1 exp2)

考虑exp1。exp1是个函数,或者能被归约成函数的应用。如果exp1是应用,那么exp1要么会归约到一个函数,要么无限循环。如果exp1无限循环,就和我们的最短假设矛盾,所以exp1会归约到一个函数。如果exp1会归约到一个函数,那么和exp1是一个函数没什么区别。简单考虑,假设exp1是个函数:

exp1 := (lambda (x) body)

那么

(exp1 exp2)
== ((lambda (x) body) exp2)
= body[x <- exp2]

为了让表达式无限循环,我们希望:

(exp1 exp2) == body[x <- exp2]

所以body应该是个应用:

body := (subexp1 subexp2)
<=> (exp1 exp2) == (subexp1[x <- exp2] subexp2[x <- exp2])
<=> exp1 == subexp1[x <- exp2]  and  exp2 == subexp2[x <- exp2]

从最后一个条件可以推出:

exp2 == subexp2[x <- exp2]  <=>  subexp2 == x

另外还能看出,表达式exp1中包含了一个和exp2相等的子表达式。满足这个条件的最简单的exp1就是和exp2相等的exp1。

exp1 == exp2
<=> subexp1[x <- exp2] == exp2
<=> subexp1 == x

综合几个条件:

exp1
== (lambda (x) body)
== (lambda (x) (subexp1 subexp2))
== (lambda (x) (x x)) exp2
== exp1
== (lambda (x) (x x))

于是我们要找的无限循环的表达式是:

((lambda (x) (x x)) (lambda (x) (x x)))

这个表达式就是lambda演算里的\(\Omega\)表达式。\(\Omega\)表达式循环的关键在于(f f)形式的表达式,即自己应用到自己。\(\Omega\)包含了三个(f f)形式的表达式。

寻找 Y combinator

一般来说,递归函数长这个样子:

target := (lambda args body[target])

body[target]的意思是一个包含target这个符号的表达式,args表示这是一个任意个数参数的函数。在这个表达式中,target是一个无约束的符号。一个包含无约束符号的表达式不能被求值。Lambda演算中约束一个符号的方法是用lambda关键字,为了让target变成约束符号,我们改写表达式:

p := (lambda (target)
(lambda args body[target]))
   = (lambda (f)
       (lambda args body[f]))

为了避免混淆,上面将target改名成f(\(\alpha\)归约),target仍然表示我们想要的递归函数的表达式。target和p有如下关系:

(p target)
= (lambda args body[target])
= target

顺便一提,可以看出我们在寻找的target是p的一个不动点。

接下来考虑如何找target。记得寻找\(\Omega\)的启发吗?我们猜测target是一个(g g)形式的表达式:

target == (g g)
=>
(p target) = target
<=> (p (g g)) = (g g)
<=> (g g) = (p (g g)) = ((lambda (x) (p (x x))) g)

根据最后一个条件可以看出:

g := (lambda (x) (p (x x)))
=>
target == (g g)
== ((lambda (x) (p (x x)))
(lambda (x) (p (x x))))

把p提取到参数位置:

target =
((lambda (f)
((lambda (x) (f (x x)))
(lambda (x) (f (x x))))) p) Y :=
(lambda (f)
((lambda (x) (f (x x)))
(lambda (x) (f (x x))))) target = (Y p)

这个Y就是Y combinator。

用 Y combinator 推导出 \(\Omega\)

最简单的无限循环函数是:

f := (lambda () (f))

利用Y combinator来生成这个函数的lambda表达式看看会得到什么?

(Y (lambda (f) (lambda () (f))))
= ((lambda (x) ((lambda (f) (lambda () (f))) (x x)))
(lambda (x) ((lambda (f) (lambda () (f))) (x x))))
= ((lambda (x) (lambda () ((x x))))
(lambda (x) (lambda () ((x x)))))

呼,要对齐这么多括弧真不容易。注意到(\(\eta\)归约):

(lambda () ((x x))) = (x x)

所以:

(Y (lambda (f) (lambda () (f))))
= ((lambda (x) (x x)) (lambda (x) (x x)))

如何猜出 Y combinator的更多相关文章

  1. Y Combinator

    常见的例子 阶乘函数: fact = (a) -> if a > 0 then a * fact(a - 1) else 1 问题的提出 如上,在fact函数中调用了fact本身,无法使用 ...

  2. 利用Python完成一个小游戏:随机挑选一个单词,并对其进行乱序,玩家要猜出原始单词

    一 Python的概述以及游戏的内容 Python是一种功能强大且易于使用的编程语言,更接近人类语言,以至于人们都说它是“以思考的速度编程”:Python具备现代编程语言所应具备的一切功能:Pytho ...

  3. YC(Y Combinator)斯坦福大学《如何创业》课程要点记录(粗糙)

    20节课程,每节都是干货满满,时常听说理论无用,但是好的理论,绝对能帮助你少走一些弯路. YC简介: Y Combinator成立于2005年,是美国著名创业孵化器,Y Combinator扶持初创企 ...

  4. java基础小练习,1-打印一百次(1~10)的随机数,2-固定一个随机数(1~100),然后猜出他,3-定义以指定格式打印集合(ArrayList类型作为参数),使用{}括起来,使用@代替,分隔每个元素

    推荐自己码一下,可以使用别的方法,面向对象,不需要注重过程 /* 题目:我需要打印一百次(1~10)的随机数 */ import java.util.Random; public class demo ...

  5. y combinator 做的一个调查_可以学习一下

    RoR: 在网络营运平台企业中,RoR站稳使用率第一的位置.其用户包括:ZenPayroll (人力资源).Asile50 (零售平台).BackerKit (众筹平台).Rainforest (QA ...

  6. 使用Python的yield实现流计算模式

    首先先提一下上一篇<如何猜出Y combinator>中用的方法太复杂了.其实在Lambda演算中实现递归的思想很简单,就是函数把自己作为第一个参数传入函数,然后后面就是简单的Lambda ...

  7. python 游戏(猜数字)

    1. 构造猜数字核心函数 import random def guess_core(guess_min,guess_max,guess_counrt): '''猜数字核心判断函数 :param gue ...

  8. CF 576A 猜数

    A给出一个数x,B每次猜一个y,A回答B,x是否可以被y整除,求出要猜的最小次数和需要猜的数. 枚举每个素数p,可以知道如果p^k<=n,则p^k一定需要选 Sample test(s)inpu ...

  9. LightOJ 1244 - Tiles 猜递推+矩阵快速幂

    http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N < ...

随机推荐

  1. 第三章 服务治理:Spring Cloud Eureka

    Spring Cloud Eureka是Spring Cloud Netflix 微服务套件中的一部分,它基于Netflix Eureka做了二次封装,主要负责完成微服务架构中的服务治理功能.Spri ...

  2. 从零开始学 Web 之 Ajax(七)跨域

    大家好,这里是「 从零开始学 Web 系列教程 」,并在下列地址同步更新...... github:https://github.com/Daotin/Web 微信公众号:Web前端之巅 博客园:ht ...

  3. solr单机部署tomcat

    所需软件:solr4.8.1.Tomcat7 下载完相应软件后开始单机部署(windows下) 在F盘根目录创建solr文件夹,并解压solr4.8和tomcat7到该文件夹 在F盘根目录创建solr ...

  4. 怎么样在windows命令下创建一个没有文件名的文件?

    直接上图 echo ' ' >> .aa //创建一个空字符的 .aa 的文件

  5. Python循环文件推荐的方式,可用于读取文本最后一行或删除指定行等

    读取文本最后一行: f = open('test11.txt', 'rb') for i in f: offset = -16 while True: f.seek(offset, 2) data = ...

  6. SpringBoot入门之集成JSP

    原本打算这篇继续写thymeleaf方面的内容,一看内容还挺多的,可能一周也写不完,而且从Controller获取值等内容也都能从网上百度,所以就写了springboot集成jsp.不管thymele ...

  7. asp.net 获取网站根地址

    public static string GetSiteRoot() { string port = System.Web.HttpContext.Current.Request.ServerVari ...

  8. [PHP]算法-替换空格的PHP实现

    替换空格: 请实现一个函数,将一个字符串中的每个空格替换成“%20”.例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy. 思路: 1.先循环一遍,找出 ...

  9. [android] 手机卫士关闭自动更新

    保存数据的四种方式,网络,广播提供者,SharedPreferences,数据库 获取SharedPreferences对象,通过getSharedPreferences()方法,参数:名称,模式 例 ...

  10. 【23】备忘录模式(Memento Pattern)

    一.引言 在上一篇博文分享了访问者模式,访问者模式的实现是把作用于某种数据结构上的操作封装到访问者中,使得操作和数据结构隔离.而今天要介绍的备忘者模式与命令模式有点相似,不同的是,命令模式保存的是发起 ...