洛谷题目传送门

一开始肯定要把题目要求的式子给写出来

我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\)

题目要乘\(m^2\)再输出,于是

\(m^2s^2=m\sum\limits_{i=1}^{m}(x_i-\overline x)^2\)

\(=m(\sum\limits_{i=1}^{m}x_i^2-2\overline{x}\sum\limits_{i=1}^{m}x_i+m\overline{x}^2)\)

\(=m\sum\limits_{i=1}^{m}x_i^2-(\sum\limits_{i=1}^{m}x_i)^2\)

于是只要最小化\(\sum\limits_{i=1}^{m}x_i^2\)即可。

然而选\(m\)段非常不好办。这时候可以联想到凸优化。设\(G_m\)表示选\(m\)段\(\sum\limits_{i=1}^{m}x_i^2\)的最小值,当\(m\)增大的时候\(G_m\)显然会减小,凭蒟蒻的感性理解,多分出一段对答案的影响幅度也越来越小,也就是说\(G_x\)关于\(x\)的函数图像大概是下凸的。

我们用一个斜率为\(mid\)的直线去切这个凸包。显然\(mid\)的下界取\([0,1]\)之间的斜率,是总路程平方级别的,上界是\(0\)。因为切线在凸包的下方,所以多选一段的代价不是\(+mid\)而是\(-mid\)。

update:蒟蒻弃用了用直线切凸包的理解方法,蒟蒻用导数思想理解DP凸优化的思路可以看这里

接下来就是斜率优化的过程。设\(f_i\)为前\(i\)条路的最优答案,\(x_i\)为路程长度的前缀和,写出转移方程

\(f_i=\min\limits_{j=0}^{i}\{f_j-2x_ix_j+x_j^2\}+x_i^2\)

决策\(j\)优于\(k\)当且仅当

\(f_j-2x_ix_j+x_j^2<f_k-2x_ix_k+x_k^2\)

\(\frac{f_j+x_j^2-f_k-x_k^2}{x_j-x_k}<2x_i\)

于是设\(y_i=f_i+x_i^2\),把决策看成点\((x_i,y_i)\),使用单调队列就OK了。注意这里要记\(c_i\)表示最优决策下将前\(i\)条路分出的段数。最后判断\(c_n\)与\(m\)的关系来调整斜率。

由于这一题的斜率肯定不会有小数,故也不必担心二分中的一些边界问题。

#include<cstdio>
#define RG register
#define R RG int
#define G c=getchar()
#define Calc(j,k) (y[j]-y[k])/(x[j]-x[k])
typedef long long LL;
const int N=3009;
int n,q[N],c[N];
double f[N],k[N],x[N],y[N];
inline int in(){
RG char G;
while(c<'-')G;
R x=c&15;G;
while(c>'-')x=x*10+(c&15),G;
return x;
}
inline double sqr(RG double x){
return x*x;
}
inline void work(R mid){//斜率优化
R h,t,i;
for(h=t=i=1;i<=n;++i){
while(h<t&&k[h]<2*x[i])++h;
f[i]=f[q[h]]+sqr(x[i]-x[q[h]])-mid;//每转移一次要减一下mid
y[i]=f[i]+sqr(x[i]);
c[i]=c[q[h]]+1;//记录段数
while(h<t&&k[t-1]>Calc(q[t],i))--t;
k[t]=Calc(q[t],i);q[++t]=i;
}
}
int main(){
n=in();R m=in(),l,r,mid,i;
for(i=1;i<=n;++i)x[i]=x[i-1]+in();
l=-sqr(x[n]);r=0;//大致确定下界
while(l<r){
work(mid=(l+r+1)/2);//注意负数的下取整问题
c[n]<=m?l=mid:r=mid-1;
}
work(l);
printf("%.0lf\n",m*(f[n]+m*l)-sqr(x[n]));//先加回m*l
return 0;
}

洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)的更多相关文章

  1. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  2. 6.13校内互测 (DP 带权二分 斜率优化)

    丘中有麻plant 改自这儿,by ZBQ. 还有隐藏的一页不放了.. 直接走下去的话,如果开始时间确定那么到每个点的时间确定,把time减去dis就可以去掉路程的影响了. 这样对于减去d后的t,如果 ...

  3. [洛谷P4072] SDOI2016 征途

    问题描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...

  4. 洛谷P4072 [SDOI2016]征途(斜率优化)

    传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...

  5. 洛谷 P2024 [NOI2001]食物链——带权值的并查集维护

    先上一波题目 https://www.luogu.org/problem/P2024 通过这道题复习了一波并查集,学习了一波带权值操作 首先我们观察到 所有的环都是以A->B->C-> ...

  6. 洛谷P1196 银河英雄传说[带权并查集]

    题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山 ...

  7. 洛谷4072 SDOI2016征途 (斜率优化+dp)

    首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...

  8. 【洛谷 P2120】 [ZJOI2007]仓库建设(斜率优化)

    题目链接 斜率优化+1,好吧不水分了. 玩具装箱那题以后再做,当作复习吧. \(f[i]=f[j]-(sum[i]-sum[j])*dis[i]+p[i]\) \(f[j]=-dis[i]*sum[j ...

  9. 【洛谷 P3648】 [APIO2014]序列分割 (斜率优化)

    题目链接 假设有\(3\)段\(a,b,c\) 先切\(ab\)和先切\(bc\)的价值分别为 \(a(b+c)+bc=ab+bc+ac\) \((a+b)c+ab=ab+bc+ac\) 归纳一下可以 ...

随机推荐

  1. java中使用jxl读取excel中的数据

    package bboss; import java.io.File; import java.io.FileInputStream; import java.io.IOException; impo ...

  2. BZOJ1185 HNOI2007 最小矩形覆盖 凸包、旋转卡壳

    传送门 首先,肯定只有凸包上的点会限制这个矩形,所以建立凸包. 然后可以知道,矩形上一定有一条边与凸包上的边重合,否则可以转一下使得它重合,答案会更小. 于是沿着凸包枚举这一条边,通过旋转卡壳找到离这 ...

  3. Luogu4219 BJOI2014 大融合 LCT

    传送门 题意:写一个数据结构,支持图上连边(保证图是森林)和询问一条边两端的连通块大小的乘积.$\text{点数.询问数} \leq 10^5$ 图上连边,$LCT$跑不掉 支持子树$size$有点麻 ...

  4. [Python]Python 使用 for 循环的小例子

    [Python]Python 使用 for 循环的小例子: In [7]: for i in range(5): ...: print "xxxx" ...: print &quo ...

  5. CSS 表格实例

    CSS 表格实例CSS 表格属性可以帮助您极大地改善表格的外观.CSS Table 属性属性 描述border-collapse 设置是否把表格边框合并为单一的边框.border-spacing 设置 ...

  6. Microsoft Office软件自定义安装目录

    Microsoft Office安装时不能手动设置安装目录,本文描述通过修改注册表的方式自定义安装目录 1.同时按下快捷键 win + r 启动运行 2.输入 regedit 打开注册表 3.找到   ...

  7. Salesforce随笔: 将Visualforce Page导出为 Excel/CSV/txt (Display a page in Excel)

    想要实现如题所述功能,可以参照 : Visualforce Developer Guide 第57页中所举的例子,在<apex:page>标签中添加contentType属性. <a ...

  8. Mysql基于GTID复制模式-运维小结 (完整篇)

    先来看mysql5.6主从同步操作时遇到的一个报错:mysql> change master to master_host='192.168.10.59',master_user='repli' ...

  9. C_数据结构_递归自己调用自己

    # include <stdio.h> void f(int n) { ) printf("哈哈\n"); else f(n-i); } int main(void) ...

  10. HTTP 及相关知识

    什么是HTTP.流程? 什么是AJAX.方法.状态码?