这是Lowest JN dalao昨天上课讲的一道题其实是水题啦

题意很简单,我们也很容易建模转化出一个奇怪的东西

首先我们对b进行sort,然后我们就可以通过二分来判断出这个数可以和哪些数配对

然后我们稍微想一下就可以知道:每一段区间都是b数组后缀的形式

证明很简单,如果假设当前的数与第\(i\)位上的\(b_i\)不匹配,那么对于比\(b_i\)更小的\(b_{i-1}\)肯定是无法匹配的

然后我们可以转化为一个类似于二分图的完美匹配的问题,只不过其中匹配的数如上面所言是后缀的形式

然后我们可以套一个叫霍尔定理的东西,证明自看

然后我们发现对于所有的\(b_i(1\le i\le m)\),都需要有至少i根线段包含了它

更直接的,我们令一个统计数组\(c\),开始时\(c_i\)都等于\(-i\),这样每次只需要给一个后缀加1即可

然后查询是否可以实现只需要看一下最小值是否>=0即可

然后直接做是肯定T的,然后我们发现我们需要完成的任务:

  1. 区间加
  2. 区间减(在抵消之前的操作是会用到)
  3. 区间最值查询

这不就是线段树随便维护一下的东西吗。

CODE

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=150005;
int a[N],b[N],c[N],r[N],n,m,ans,h;
struct segtree
{
int s,add;
}tree[N<<2];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
inline int find(int x)
{
int l=1,r=m,res=m+1;
while (l<=r)
{
int mid=l+r>>1;
if (b[mid]>=x) res=mid,r=mid-1; else l=mid+1;
}
return res;
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline void up(int rt)
{
tree[rt].s=min(tree[rt<<1].s,tree[rt<<1|1].s);
}
inline void down(int rt)
{
if (tree[rt].add)
{
tree[rt<<1].add+=tree[rt].add; tree[rt<<1|1].add+=tree[rt].add;
tree[rt<<1].s+=tree[rt].add; tree[rt<<1|1].s+=tree[rt].add;
tree[rt].add=0;
}
}
inline void build(int rt,int l,int r)
{
if (l==r)
{
tree[rt].s=c[l];
return;
}
int mid=l+r>>1;
build(rt<<1,l,mid); build(rt<<1|1,mid+1,r);
up(rt);
}
inline void modify(int rt,int l,int r,int beg,int end,int k)
{
if (l>=beg&&r<=end)
{
tree[rt].add+=k; tree[rt].s+=k;
return;
}
int mid=l+r>>1;
down(rt);
if (beg<=mid) modify(rt<<1,l,mid,beg,end,k);
if (end>mid) modify(rt<<1|1,mid+1,r,beg,end,k);
up(rt);
}
inline int query(int rt,int l,int r,int beg,int end)
{
if (l>=beg&&r<=end) return tree[rt].s;
int mid=l+r>>1,res=1e9;
down(rt);
if (beg<=mid) res=min(res,query(rt<<1,l,mid,beg,end));
if (end>mid) res=min(res,query(rt<<1|1,mid+1,r,beg,end));
up(rt); return res;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); read(m); read(h);
for (i=1;i<=m;++i)
read(b[i]),c[i]=-i; sort(b+1,b+m+1);
for (i=1;i<=n;++i)
read(a[i]);
build(1,1,m);
for (i=1;i<=m;++i)
{
r[i]=find(h-a[i]);
if (r[i]<=m) modify(1,1,m,r[i],m,1);
}
if (query(1,1,m,1,m)>=0) ++ans;
for (i=m+1;i<=n;++i)
{
r[i]=find(h-a[i]);
if (r[i-m]<=m) modify(1,1,m,r[i-m],m,-1);
if (r[i]<=m) modify(1,1,m,r[i],m,1);
if (query(1,1,m,1,m)>=0) ++ans;
}
printf("%d",ans);
return 0;
}

LOJ #6062. 「2017 山东一轮集训 Day2」Pair的更多相关文章

  1. loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树

    题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配.两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当 ...

  2. ACM-ICPC 2017 西安赛区现场赛 K. LOVER II && LibreOJ#6062. 「2017 山东一轮集训 Day2」Pair(线段树)

    题目链接:西安:https://nanti.jisuanke.com/t/20759   (计蒜客的数据应该有误,题目和 LOJ 的大同小异,题解以 LOJ 为准)     LOJ:https://l ...

  3. 【LOJ6062】「2017 山东一轮集训 Day2」Pair(线段树套路题)

    点此看题面 大致题意: 给出一个长度为\(n\)的数列\(a\)和一个长度为\(m\)的数列\(b\),求\(a\)有多少个长度为\(m\)的子串与\(b\)匹配.数列匹配指存在一种方案使两个数列中的 ...

  4. LOJ6062「2017 山东一轮集训 Day2」Pair(Hall定理,线段树)

    题面 给出一个长度为 n n n 的数列 { a i } \{a_i\} {ai​} 和一个长度为 m m m 的数列 { b i } \{b_i\} {bi​},求 { a i } \{a_i\} ...

  5. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  6. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

  7. Loj 6068. 「2017 山东一轮集训 Day4」棋盘

    Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...

  8. LOJ #6074. 「2017 山东一轮集训 Day6」子序列

    #6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...

  9. loj #6077. 「2017 山东一轮集训 Day7」逆序对

    #6077. 「2017 山东一轮集训 Day7」逆序对   题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...

随机推荐

  1. loadrunner 脚本开发-定义全局变量

    脚本开发-定义全局变量 by:授客 QQ:1033553122 如果参数是全局的,在脚本中的任何一个Action中都可以使用,变量一般是局部的,如果跨Action调用会出现未声明的错误. 打开Scri ...

  2. 【Java入门提高篇】Day32 Java容器类详解(十四)ArrayDeque详解

    今天来介绍一个不太常见也不太常用的类——ArrayDeque,这是一个很不错的容器类,如果对它还不了解的话,那么就好好看看这篇文章吧. 看完本篇,你将会了解到: 1.ArrayDeque是什么? 2. ...

  3. unresolved external symbol boost::throw_exception

    使用boost库,VS生成的时候一直报错, error LNK2019: 无法解析的外部符号 "void __cdecl boost::throw_exception(class std:: ...

  4. 洗礼灵魂,修炼python(44)--巩固篇—反射之重新认识hasattr,gettattr,setattr,delattr

    不急着进入正题.先动手完成一个小程序: 设计一套简单的服务开启关闭程序,每次开启或关闭都得打印服务当前的状态: class Server(object): def __init__(self): se ...

  5. 解决SQL Server本地Windows身份无法登录

    CREATE LOGIN [计算机名\Windows帐户名] FROM WINDOWS

  6. tkinter学习系列(四)之Button 控件

    目录 目录 前言 (一)基本用法和可选属性 ==1.基本用法== ==2.可选属性== (二)属性的具体实现和案例 ==1.常用属性== ==案例一== ==2.按钮里的图片== ==案例二== == ...

  7. MySQL 聚簇索引和非聚簇索引的认识

    聚簇索引是对磁盘上实际数据重新组织以按指定的一个或多个列的值排序的算法.特点是存储数据的顺序和索引顺序一致.一般情况下主键会默认创建聚簇索引,且一张表只允许存在一个聚簇索引. 在<数据库原理&g ...

  8. 关于plist文件的那些事

    今天遇到新生问一个问题,就是用自己定义了一个plist文件,然后可以往里面写东西,但是写过再次运行的时候里面的数据总是最后一次写入的数据.后来就专门研究了一下plist文件. 大家都知道当你创建一个项 ...

  9. JAVA获取本机IP和Mac地址

       在项目中,时常需要获取本机的Ip或是Mac地址,进行身份和权限验证,本文就是通过java代码获取ip和Mac. package com.svse.query;import java.net.In ...

  10. springboot整合redisson分布式锁

    一.通过maven引入redisson的jar包 <dependency> <groupId>org.redisson</groupId> <artifact ...