Codechef MGCHGYM Misha and Gym 容斥、背包、Splay
简化题意:给定一个长度为\(N\)的数列,\(Q\)个操作:
\(1\,x\,a\)、将数列中第\(x\)个元素改为\(a\)
\(2\,l\,r\)、反转子序列\([l,r]\)
\(3\,l\,r\,w\)、询问区间\([l,r]\)中是否存在若干个数和为\(w\),一个数只能取一次
注意:在整个过程中,在数列中出现过的数的种数不会超过\(K(K \leq 10)\)。
注意到最后一个条件很奇怪……
考虑询问实际上是:最开始给出不超过\(10\)个数\(a_1,...,a_{10}\),每一次给出\(a_1,...,a_{10}\)分别最多能够取的次数,问是否能够取出若干使得和为\(w\);而前两个操作只是在改变这个能够取的最多次数。
不妨更进一步想,试着求能够取的方案数……
是不是想到了……
那么我们可以直接按照硬币购物的方法去做
先用\(a_1\)到\(a_{10}\)跑完全背包,对于每一次询问进行容斥,强制令某一些数字超出使用次数并计算答案。那么每一次询问的复杂度是\(2^{10}\)的。
最后使用\(Splay\)维护一下前两个修改操作,题目就做完了。
关于完全背包存不下那么多方案数的问题……直接模\(10^9+7\)
#include<bits/stdc++.h>
#define lch Tree[x].ch[0]
#define rch Tree[x].ch[1]
#define root Tree[0].ch[0]
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return f ? -a : a;
}
const int MAXN = 1e5 + 10 , MOD = 1e9 + 7;
int dp[MAXN] , dir[11] , *cnt , N , Q , cntN , cntL;
map < int , int > lsh;
struct node{
int ch[2] , sz , fa , val , sum[11];
bool mark;
}Tree[MAXN];
struct query{
int ind , a , b , c;
}que[MAXN];
inline int getL(int x){
if(!lsh.count(x)){
lsh[x] = ++cntL;
dir[cntL] = x;
}
return lsh[x];
}
inline bool son(int x){
return Tree[Tree[x].fa].ch[1] == x;
}
inline void pushup(int x){
for(int i = 1 ; i <= 10 ; ++i)
Tree[x].sum[i] = Tree[lch].sum[i] + Tree[rch].sum[i] + (Tree[x].val == i);
Tree[x].sz = Tree[lch].sz + Tree[rch].sz + 1;
}
inline void rotate(int x){
bool f = son(x);
int y = Tree[x].fa , z = Tree[y].fa , w = Tree[x].ch[f ^ 1];
Tree[x].fa = z;
Tree[z].ch[son(y)] = x;
Tree[x].ch[f ^ 1] = y;
Tree[y].fa = x;
Tree[y].ch[f] = w;
if(w)
Tree[w].fa = y;
pushup(y);
}
inline void Splay(int x , int tar){
while(Tree[x].fa != tar){
if(Tree[Tree[x].fa].fa != tar)
rotate(son(x) == son(Tree[x].fa) ? Tree[x].fa : x);
rotate(x);
}
pushup(x);
}
inline void mark(int x){
if(!x)
return;
swap(lch , rch);
Tree[x].mark ^= 1;
}
inline void pushdown(int x){
if(Tree[x].mark){
mark(lch);
mark(rch);
Tree[x].mark = 0;
}
}
void insert(int &x , int rk , int val , int fa){
if(!x){
x = ++cntN;
Tree[x].fa = fa;
Tree[x].sz = 1;
Tree[x].val = val;
Splay(x , 0);
return;
}
if(Tree[lch].sz >= rk)
insert(lch , rk , val , x);
else
insert(rch , rk - 1 - Tree[lch].sz , val , x);
}
void findKth(int x , int rk , int tar){
pushdown(x);
if(Tree[lch].sz == rk)
Splay(x , tar);
else
if(Tree[lch].sz > rk)
findKth(lch , rk , tar);
else
findKth(rch , rk - Tree[lch].sz - 1 , tar);
}
inline void modify(int x , int val){
findKth(root , x , 0);
--Tree[root].sum[Tree[root].val];
++Tree[root].sum[Tree[root].val = val];
}
inline void rev(int l , int r){
findKth(root , l - 1 , 0);
findKth(root , r + 1 , root);
mark(Tree[Tree[root].ch[1]].ch[0]);
}
inline void query(int l , int r){
findKth(root , l - 1 , 0);
findKth(root , r + 1 , root);
cnt = Tree[Tree[Tree[root].ch[1]].ch[0]].sum;
}
void init(){
dp[0] = 1;
for(int i = 1 ; i <= cntL ; ++i)
for(int j = dir[i] ; j <= 1e5 ; ++j)
dp[j] = (dp[j] + dp[j - dir[i]]) % MOD;
}
int dfs(int x , int sum , int flg){
if(sum < 0)
return 0;
if(x > cntL)
return flg * dp[sum];
return (dfs(x + 1 , sum , flg) + dfs(x + 1 , sum - (cnt[x] + 1) * dir[x] , flg * -1) + 1ll * MOD) % MOD;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
freopen("out","w",stdout);
#endif
N = read();
Q = read();
insert(root , 0 , 0 , 0);
for(int i = 1 ; i <= N ; ++i)
insert(root , i , getL(read()) , 0);
insert(root , N + 1 , 0 , 0);
for(int i = 1 ; i <= Q ; ++i){
que[i].ind = read();
que[i].a = read();
que[i].b = read();
if(que[i].ind == 3)
que[i].c = read();
if(que[i].ind == 1)
que[i].b = getL(que[i].b);
}
init();
for(int i = 1 ; i <= Q ; ++i)
switch(que[i].ind){
case 1:
modify(que[i].a , que[i].b);
break;
case 2:
rev(que[i].a , que[i].b);
break;
case 3:
query(que[i].a , que[i].b);
puts(dfs(1 , que[i].c , 1) ? "Yes" : "No");
}
return 0;
}
Codechef MGCHGYM Misha and Gym 容斥、背包、Splay的更多相关文章
- BZOJ 1042: [HAOI2008]硬币购物 容斥+背包
1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...
- Atcoder Grand Contest 038 E - Gachapon(Min-Max 容斥+背包)
Atcoder 题面传送门 & 洛谷题面传送门 我竟然能独立做出 Ag 的 AGC E,incredible!更新了 Atcoder 做题难度上限( 首先按照套路 Min-Max 容斥,\(a ...
- 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)
题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...
- 牛客练习赛64 D【容斥+背包】
牛客练习赛64 D.宝石装箱 Description \(n\)颗宝石装进\(n\)个箱子使得每个箱子中都有一颗宝石.第\(i\)颗宝石不能装入第\(a_i\)个箱子.求合法的装箱方案对\(99824 ...
- P1450 [HAOI2008]硬币购物(完全背包+容斥)
P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...
- ARC 101E.Ribbons on Tree(容斥 DP 树形背包)
题目链接 \(Description\) 给定一棵\(n\)个点的树.将这\(n\)个点两两配对,并对每一对点的最短路径染色.求有多少种配对方案使得所有边都至少被染色一次. \(n\leq5000\) ...
- BZOJ-1042:硬币购物(背包+容斥)
题意:硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 思路:这么老的题,居然今天才做到. ...
- Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理
Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理 [Problem Description] 略 [Solution] 上述题目等价于:有\(4\)种物品,每种物品有\(d_i ...
- BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)
题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...
随机推荐
- 【读书笔记】iOS-优化iOS Web应用
一,代码优化: 代码优化是任何优化技术的第一步,因为归根结底网页上的一切都是构建在代码之上的.优秀的代码可以节省宽带,减少渲染延迟,以及提高页面的可读性和长远的可维护性.下面列出了一些在Web应用中编 ...
- React 入门学习笔记整理(六)—— 组件通信
1.父子组件通信 1)父组件与子组件通信,使用Props 父组件将name传递给子组件 <GreateH name="kitty"/> 子组件通过props接收父组件的 ...
- video自动禁止全屏
在微信浏览器.苹果等其他浏览器,里面使用video标签,会自动变成全屏,改成下面就好了,起码可以在video标签之上加入其他元素 webkit-playsinline playsinline x ...
- Lightning 组件基础知识
Lightning框架简介 Lightning框架是Salesforce提供的一套基于用户界面的开发框架,对于开发单页面应用(Single Page Application)有很大的帮助.它和Visu ...
- Oracle EBS FA 资产取值
SELECT fb.book_type_code, fth.ASSET_NUMBER, fdh.units_assigned, fdh.assigned_to, pf.FULL_NAME, fl.se ...
- if条件简单语法
if语句是实际工作中最重要最常用的语句. if条件语法: 单分支结构 if [ 条件 ] then 指令 fi 或 if [ 条件 ]:then 指令 fi if 单分支条件中文编程形象语法: 如果 ...
- Java概述和项目演示
Java概述和项目演示 1. 软件开发学习方法 多敲 多思考 解决问题 技术文档阅读(中文,英文) 项目文档 多阅读源码 2. 计算机 简称电脑,执行一系列指令的电子设备 3. 硬件组成 输入设备:键 ...
- check
private int AddNewstoDB(NewsModels newsModels, string dateTimeStr, string jsonStr, string cid, strin ...
- [BUG]Appium1.9.1 这个问题竟然花了我5分钟进行定位
1.先上问题,知道是什么问题先 EE ====================================================================== ERROR: tes ...
- python第四十五课——继承性之多继承
测试模块 演示多继承的结构和使用: 子类:Child 直接父类(多个):Father.Mother 注意: 由于有多个直接父类,多个父类都要自己给其属性赋值, 避免混淆,我们使用类名.__init__ ...