Codechef MGCHGYM Misha and Gym 容斥、背包、Splay
简化题意:给定一个长度为\(N\)的数列,\(Q\)个操作:
\(1\,x\,a\)、将数列中第\(x\)个元素改为\(a\)
\(2\,l\,r\)、反转子序列\([l,r]\)
\(3\,l\,r\,w\)、询问区间\([l,r]\)中是否存在若干个数和为\(w\),一个数只能取一次
注意:在整个过程中,在数列中出现过的数的种数不会超过\(K(K \leq 10)\)。
注意到最后一个条件很奇怪……
考虑询问实际上是:最开始给出不超过\(10\)个数\(a_1,...,a_{10}\),每一次给出\(a_1,...,a_{10}\)分别最多能够取的次数,问是否能够取出若干使得和为\(w\);而前两个操作只是在改变这个能够取的最多次数。
不妨更进一步想,试着求能够取的方案数……
是不是想到了……
那么我们可以直接按照硬币购物的方法去做
先用\(a_1\)到\(a_{10}\)跑完全背包,对于每一次询问进行容斥,强制令某一些数字超出使用次数并计算答案。那么每一次询问的复杂度是\(2^{10}\)的。
最后使用\(Splay\)维护一下前两个修改操作,题目就做完了。
关于完全背包存不下那么多方案数的问题……直接模\(10^9+7\)
#include<bits/stdc++.h>
#define lch Tree[x].ch[0]
#define rch Tree[x].ch[1]
#define root Tree[0].ch[0]
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return f ? -a : a;
}
const int MAXN = 1e5 + 10 , MOD = 1e9 + 7;
int dp[MAXN] , dir[11] , *cnt , N , Q , cntN , cntL;
map < int , int > lsh;
struct node{
int ch[2] , sz , fa , val , sum[11];
bool mark;
}Tree[MAXN];
struct query{
int ind , a , b , c;
}que[MAXN];
inline int getL(int x){
if(!lsh.count(x)){
lsh[x] = ++cntL;
dir[cntL] = x;
}
return lsh[x];
}
inline bool son(int x){
return Tree[Tree[x].fa].ch[1] == x;
}
inline void pushup(int x){
for(int i = 1 ; i <= 10 ; ++i)
Tree[x].sum[i] = Tree[lch].sum[i] + Tree[rch].sum[i] + (Tree[x].val == i);
Tree[x].sz = Tree[lch].sz + Tree[rch].sz + 1;
}
inline void rotate(int x){
bool f = son(x);
int y = Tree[x].fa , z = Tree[y].fa , w = Tree[x].ch[f ^ 1];
Tree[x].fa = z;
Tree[z].ch[son(y)] = x;
Tree[x].ch[f ^ 1] = y;
Tree[y].fa = x;
Tree[y].ch[f] = w;
if(w)
Tree[w].fa = y;
pushup(y);
}
inline void Splay(int x , int tar){
while(Tree[x].fa != tar){
if(Tree[Tree[x].fa].fa != tar)
rotate(son(x) == son(Tree[x].fa) ? Tree[x].fa : x);
rotate(x);
}
pushup(x);
}
inline void mark(int x){
if(!x)
return;
swap(lch , rch);
Tree[x].mark ^= 1;
}
inline void pushdown(int x){
if(Tree[x].mark){
mark(lch);
mark(rch);
Tree[x].mark = 0;
}
}
void insert(int &x , int rk , int val , int fa){
if(!x){
x = ++cntN;
Tree[x].fa = fa;
Tree[x].sz = 1;
Tree[x].val = val;
Splay(x , 0);
return;
}
if(Tree[lch].sz >= rk)
insert(lch , rk , val , x);
else
insert(rch , rk - 1 - Tree[lch].sz , val , x);
}
void findKth(int x , int rk , int tar){
pushdown(x);
if(Tree[lch].sz == rk)
Splay(x , tar);
else
if(Tree[lch].sz > rk)
findKth(lch , rk , tar);
else
findKth(rch , rk - Tree[lch].sz - 1 , tar);
}
inline void modify(int x , int val){
findKth(root , x , 0);
--Tree[root].sum[Tree[root].val];
++Tree[root].sum[Tree[root].val = val];
}
inline void rev(int l , int r){
findKth(root , l - 1 , 0);
findKth(root , r + 1 , root);
mark(Tree[Tree[root].ch[1]].ch[0]);
}
inline void query(int l , int r){
findKth(root , l - 1 , 0);
findKth(root , r + 1 , root);
cnt = Tree[Tree[Tree[root].ch[1]].ch[0]].sum;
}
void init(){
dp[0] = 1;
for(int i = 1 ; i <= cntL ; ++i)
for(int j = dir[i] ; j <= 1e5 ; ++j)
dp[j] = (dp[j] + dp[j - dir[i]]) % MOD;
}
int dfs(int x , int sum , int flg){
if(sum < 0)
return 0;
if(x > cntL)
return flg * dp[sum];
return (dfs(x + 1 , sum , flg) + dfs(x + 1 , sum - (cnt[x] + 1) * dir[x] , flg * -1) + 1ll * MOD) % MOD;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
freopen("out","w",stdout);
#endif
N = read();
Q = read();
insert(root , 0 , 0 , 0);
for(int i = 1 ; i <= N ; ++i)
insert(root , i , getL(read()) , 0);
insert(root , N + 1 , 0 , 0);
for(int i = 1 ; i <= Q ; ++i){
que[i].ind = read();
que[i].a = read();
que[i].b = read();
if(que[i].ind == 3)
que[i].c = read();
if(que[i].ind == 1)
que[i].b = getL(que[i].b);
}
init();
for(int i = 1 ; i <= Q ; ++i)
switch(que[i].ind){
case 1:
modify(que[i].a , que[i].b);
break;
case 2:
rev(que[i].a , que[i].b);
break;
case 3:
query(que[i].a , que[i].b);
puts(dfs(1 , que[i].c , 1) ? "Yes" : "No");
}
return 0;
}
Codechef MGCHGYM Misha and Gym 容斥、背包、Splay的更多相关文章
- BZOJ 1042: [HAOI2008]硬币购物 容斥+背包
1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...
- Atcoder Grand Contest 038 E - Gachapon(Min-Max 容斥+背包)
Atcoder 题面传送门 & 洛谷题面传送门 我竟然能独立做出 Ag 的 AGC E,incredible!更新了 Atcoder 做题难度上限( 首先按照套路 Min-Max 容斥,\(a ...
- 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)
题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...
- 牛客练习赛64 D【容斥+背包】
牛客练习赛64 D.宝石装箱 Description \(n\)颗宝石装进\(n\)个箱子使得每个箱子中都有一颗宝石.第\(i\)颗宝石不能装入第\(a_i\)个箱子.求合法的装箱方案对\(99824 ...
- P1450 [HAOI2008]硬币购物(完全背包+容斥)
P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...
- ARC 101E.Ribbons on Tree(容斥 DP 树形背包)
题目链接 \(Description\) 给定一棵\(n\)个点的树.将这\(n\)个点两两配对,并对每一对点的最短路径染色.求有多少种配对方案使得所有边都至少被染色一次. \(n\leq5000\) ...
- BZOJ-1042:硬币购物(背包+容斥)
题意:硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 思路:这么老的题,居然今天才做到. ...
- Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理
Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理 [Problem Description] 略 [Solution] 上述题目等价于:有\(4\)种物品,每种物品有\(d_i ...
- BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)
题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...
随机推荐
- 【读书笔记】iOS-Objective-C编程
Objective-C中的类可以继承自任何一个顶级类,需要注意的是,虽然NSObject是最常见的顶级类,但是它并不是唯一的顶级类,例如,NSProxy就是和NSObject一样的顶级类,所以你不能说 ...
- 【读书笔记】iOS-微信公众平台搭建与开发揭秘
一,微信公众平台. 1,“再小的个体,也有自己的品牌”,这是微信公众平台的官方广告. 2,微信公众平台没有认证门槛,只需要一个邮箱和手持身份证照片.目前一个身份证号只可注册两个微信公众帐号. 二,LB ...
- ionic3用极光推送笔记
安卓 环境:ionic3 + 极光 "jpush-phonegap-plugin": "^3.4.3" "cordova-plugin-jcore& ...
- CSS--居中方式总结
一.水平居中方法 1.行内元素.字体的水平居中 1.对于行内元素(display值为inline或inline-block都可以)或者字体:父元素添加css规则:text-align:center; ...
- chrome 远程调试相关问题
1.使用chrome remote debug时打开inspect时出现一片空白 2.如何不用FQ可以享受Chrome for android的远程调试功能 3.chrome://appcache-i ...
- 编写xml文件不当时会出现R文件找不到情况
1,先检查xml文件是否报错,报错的话直接找到报错行. 2,xml文件若不报错,可能是文本值得格式输入错误 比如android:text=“<0.5km”,此时的小于号就会引发错误,导致R文件找 ...
- EF的CodeFirst模式自动迁移(适用于开发环境)
EF的CodeFirst模式自动迁移(适用于开发环境) 1.开启EF数据迁移功能 NuGet包管理器------>程序包管理控制台---------->Enable-Migrations ...
- CRM lookup筛选
function Loadcouse() { var type; var id; retrieveRecord(Xrm.Page.getAttribute("ownerid").g ...
- Mac命令行使用tree查看目录结构
默认tree命令是无法使用的,可以使用homebrew install tree安装. 如果直接使用tree,查看的目录里面含有中文字符的目录或文件时会出现汉字不能显示的问题,可以使用tree -N查 ...
- CRM项目之stark组件(1)
admin组件 admin组件的简单使用 Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.你可以在项目的 settings.py ...