TaskTracker获取并执行map或reduce任务的过程1
TaskTracker获取并执行map或reduce任务的过程(一)
我们知道TaskTracker在默认情况下,每个3秒就行JobTracker发送一个心跳包,也就是在这个心跳包中包含对任务的请求。JobTracker返回给TaskTracker的心跳包中包含有各种action(任务),如果有满足在此TaskTracker上执行的任务的话,该任务也就包含在心跳包的响应中。在TaskTracker端有线程专门等待map或reduce任务,并从队列中取出执行。
1. TaskTracker发送心跳包
TaskTracker是作为一个单独的JVM运行的,它启动以后一直处于offerService()函数中,每隔3秒就执行一次transmitHeartBeat函数,如下所示:
HeartbeatResponse heartbeatResponse = transmitHeartBeat(now);
该函数具体代码为:

HeartbeatResponse transmitHeartBeat(long now) throws IOException {
......
if (status == null) {
synchronized (this) {
status = new TaskTrackerStatus(taskTrackerName, localHostname,
httpPort,
cloneAndResetRunningTaskStatuses(
sendCounters),
failures,
maxMapSlots,
maxReduceSlots);
}
} //
// 检查是否可以接受新的任务
//
boolean askForNewTask;
long localMinSpaceStart;
synchronized (this) {
askForNewTask =
((status.countOccupiedMapSlots() < maxMapSlots ||
status.countOccupiedReduceSlots() < maxReduceSlots) &&
acceptNewTasks);
localMinSpaceStart = minSpaceStart;
}
......
HeartbeatResponse heartbeatResponse = jobClient.heartbeat(status,
justStarted,
justInited,
askForNewTask,
heartbeatResponseId);
......
return heartbeatResponse;
}

我们从中可以看出,TaskTracker首先创建一个TaskTrackerStatus对象,其中包含有TaskTracker的各种信息,比如,map slot的数目,reducer slot槽的数目,TaskTracker所在的主机名等信息。然后,对TaskTracker的空闲的slot以及磁盘空间进行检查,如果满足相应的条件时,最终就会通过JobClient(为JobTracker的代理)将心跳信息发送给JobTracker,并得到JobTracker的响应HeartbeatResponse。如下所示,JobClient是InterTrackerProtocol的一个实例,而JobTracker实现了InterTrackerProtocol这个接口。

this.jobClient = (InterTrackerProtocol)
UserGroupInformation.getLoginUser().doAs(
new PrivilegedExceptionAction<Object>() {
public Object run() throws IOException {
return RPC.waitForProxy(InterTrackerProtocol.class,
InterTrackerProtocol.versionID,
jobTrackAddr, fConf);
}
});

那么,TaskTracker怎样通过JobTracker的代理与JobTracker进行通信呢?它是通过RPC调用JobTracker的heartbeat(......)方法而实现的。
2. TaskTracker端获取任务
TaskTracker接收到任务后,会将它们放入到相应的LinkedList中,LinkedList实现了List和Queue接口,它是基于链表实现的FIFO的队列。

heartbeatInterval = heartbeatResponse.getHeartbeatInterval();if (actions != null){
for(TaskTrackerAction action: actions) {
if (action instanceof LaunchTaskAction) {
addToTaskQueue((LaunchTaskAction)action);
......
}
}
......
private void addToTaskQueue(LaunchTaskAction action) {
if (action.getTask().isMapTask()) {
mapLauncher.addToTaskQueue(action);
} else {
reduceLauncher.addToTaskQueue(action);
}
}

TaskTracker启动的时候,创建了两个线程:mapLauncher和reduceLauncher,它们分别处理map任务和reduce任务,map任务有mapLauncher负责将其放入到LinkedList中,reduce任务有reducerLauncher负责将其放入到它维护的LinkedList中。

public void addToTaskQueue(LaunchTaskAction action) {
synchronized (tasksToLaunch) {
TaskInProgress tip = registerTask(action, this);
tasksToLaunch.add(tip);
tasksToLaunch.notifyAll();
}
}

mapLauncher或者是reducerLauncher根据接收到的action,创建对应的TaskTracker.TaskInProgress对象,并放入到队列中,唤醒等待的线程进行处理。 如下所示,该线程负责从taskToLaunch中获取task,当有空间的slot时,执行这个task。

synchronized (tasksToLaunch) {
while (tasksToLaunch.isEmpty()) {
tasksToLaunch.wait();
}
//get the TIP
tip = tasksToLaunch.remove(0);
task = tip.getTask();
LOG.info("Trying to launch : " + tip.getTask().getTaskID() +
" which needs " + task.getNumSlotsRequired() + " slots");
}
.....
//得到空闲的slot后,启动这个task
startNewTask(tip);

这样,TaskTracker就得到了待处理的任务,具体如何执行请参考下一篇博客。
TaskTracker获取并执行map或reduce任务的过程1的更多相关文章
- TaskTracker获取并执行map或reduce任务的过程(一)
我们知道TaskTracker在默认情况下,每个3秒就行JobTracker发送一个心跳包,也就是在这个心跳包中包含对任务的请求.JobTracker返回给TaskTracker的心跳包中包含有各种a ...
- TaskTracker执行map或reduce任务的过程2
TaskTracker执行map或reduce任务的过程(二) 上次说到,当MapLauncher或ReduceLancher(用于执行任务的线程,它们扩展自TaskLauncher),从它们所维护的 ...
- TaskTracker执行map或reduce任务的过程(二)
上次说到,当MapLauncher或ReduceLancher(用于执行任务的线程,它们扩展自TaskLauncher),从它们所维护的LinkedList也即队列中获取到TaskInProgress ...
- 匿名函数 python内置方法(max/min/filter/map/sorted/reduce)面向过程编程
目录 函数进阶三 1. 匿名函数 1. 什么是匿名函数 2. 匿名函数的语法 3. 能和匿名函数联用的一些方法 2. python解释器内置方法 3. 异常处理 面向过程编程 函数进阶三 1. 匿名函 ...
- (转) hadoop 一个Job多个MAP与REDUCE的执行
http://blog.csdn.net/chaoping315/article/details/6221440 在hadoop 中一个Job中可以按顺序运行多个mapper对数据进行前期的处理,再进 ...
- MapReduce剖析笔记之七:Child子进程处理Map和Reduce任务的主要流程
在上一节我们分析了TaskTracker如何对JobTracker分配过来的任务进行初始化,并创建各类JVM启动所需的信息,最终创建JVM的整个过程,本节我们继续来看,JVM启动后,执行的是Child ...
- MapReduce剖析笔记之五:Map与Reduce任务分配过程
在上一节分析了TaskTracker和JobTracker之间通过周期的心跳消息获取任务分配结果的过程.中间留了一个问题,就是任务到底是怎么分配的.任务的分配自然是由JobTracker做出来的,具体 ...
- 【hadoop】如何向map和reduce脚本传递参数,加载文件和目录
本文主要讲解三个问题: 1 使用Java编写MapReduce程序时,如何向map.reduce函数传递参数. 2 使用Streaming编写MapReduce程序(C/C++ ...
- Hadoop :map+shuffle+reduce和YARN笔记分享
今天做了一个hadoop分享,总结下来,包括mapreduce,及shuffle深度讲解,还有YARN框架的详细说明等. v\:* {behavior:url(#default#VML);} o\:* ...
随机推荐
- Atitit.异步编程 java .net php python js 对照
Atitit.异步编程 java .net php python js 的比較 1. 1.异步任务,异步模式, APM模式,, EAP模式, TAP 1 1.1. APM模式: Beg ...
- 又一次拾起C语言的威严
自从用了C++,他的方便快捷一直用着屡试不爽,可是越用越认为程序不够清晰, 项目使用DSP,不得不把C++重写成C 速度没得说,很快 记录下看到的文章 少走弯路,学好C语言的推荐途径
- 通俗易懂地解决中文乱码问题(2) --- 分析解决Mysql插入移动端表情符报错 ‘incorrect string value: '\xF0...
原文:[原创]通俗易懂地解决中文乱码问题(2) --- 分析解决Mysql插入移动端表情符报错 'incorrect string value: '\xF0... 这篇blog重点在解决问题,如果你对 ...
- POJ 3255 Roadblocks (次级短路问题)
解决方案有许多美丽的地方.让我们跳回到到达终点跳回(例如有两点)....无论如何,这不是最短路,但它并不重要.算法能给出正确的结果 思考:而最短的路到同一点例程.spfa先正达恳求一次,求的最短路径的 ...
- struts2 通配符简化配置
在struts映射中反复出现的模式 动作方法 描写叙述 下一个动作方法 add 为save准备网页 save save 提交INSERT list edit 为update准备网页 update up ...
- Wowza流媒体Live直播和VOD点播配置实战
Wowza是当今可以说最流行的流媒体服务器之一,近来因为需要搭建相应的服务器,但又不想用camera等作真实的直播,所以想办法用媒体文件转换成直播流再提供给Wowza进行直播.这里把该设置步骤以及设计 ...
- CSS学习笔记:溢出文本省略(text-overflow)
原文:CSS学习笔记:溢出文本省略(text-overflow) 在CSS3中,text-overflow属性的基本语法如下: clip:表示不显示省略文本,简单的裁切. ellipsis:表示对象文 ...
- PHP 4:从Login进一步看到的
原文:PHP 4:从Login进一步看到的 我们已经在PHP 3:从Login界面谈PHP标记谈到了PHP标记,不过其页面代码有一句 require_once('bookmark_fns.php'); ...
- Spring IOC之基于JAVA的配置
基础内容:@Bean 和 @Configuration 在Spring中新的支持java配置的核心组件是 @Configuration注解的类和@Bean注解的方法. @Bean注解被用于表明一个方法 ...
- uva 11181 - Probability|Given
条件概率公式:P( A|B ) = P( AB ) / P( B ) 表示在事件B发生的前提,事件A发生的可能性: 问题的: 复位事件E:r个人买东西: 事件Ei:文章i个人买东西: 的要求是P( E ...