并检查集合

侧降序,每增加一个侧面应该推断,其中基本建设方.....

Conquer a New Region

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1169    Accepted Submission(s): 373

Problem Description
The wheel of the history rolling forward, our king conquered a new region in a distant continent.

There are N towns (numbered from 1 to N) in this region connected by several roads. It's confirmed that there is exact one route between any two towns. Traffic is important while controlled colonies are far away from the local country. We define the capacity
C(i, j) of a road indicating it is allowed to transport at most C(i, j) goods between town i and town j if there is a road between them. And for a route between i and j, we define a value S(i, j) indicating the maximum traffic capacity between i and j which
is equal to the minimum capacity of the roads on the route. 

Our king wants to select a center town to restore his war-resources in which the total traffic capacities from the center to the other N - 1 towns is maximized. Now, you, the best programmer in the kingdom, should help our king to select this center.
 
Input
There are multiple test cases.

The first line of each case contains an integer N. (1 <= N <= 200,000)

The next N - 1 lines each contains three integers a, b, c indicating there is a road between town a and town b whose capacity is c. (1 <= a, b <= N, 1 <= c <= 100,000)
 
Output
For each test case, output an integer indicating the total traffic capacity of the chosen center town.
 
Sample Input
4
1 2 2
2 4 1
2 3 1
4
1 2 1
2 4 1
2 3 1
 
Sample Output
4
3
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxn=200200; typedef long long int LL; struct Edge
{
LL u,v,w;
}edge[maxn]; bool cmp(Edge x,Edge y)
{
return x.w>y.w;
} LL n;
LL fa[maxn];
LL value[maxn];
LL sz[maxn]; LL find(LL x)
{
if(x==fa[x]) return x;
return fa[x]=find(fa[x]);
} int main()
{
while(scanf("%I64d",&n)!=EOF)
{
for(LL i=0;i<n-1;i++)
{
LL a,b,c;
scanf("%I64d%I64d%I64d",&a,&b,&c);
edge[i].u=a; edge[i].v=b; edge[i].w=c;
fa[i]=i;sz[i]=1;value[i]=0;
}
fa[n-1]=n-1; sz[n-1]=1; value[n-1]=0;
fa[n]=n;sz[n]=1;value[n]=0;
sort(edge,edge+n-1,cmp);
for(LL i=0;i<n-1;i++)
{
LL u=edge[i].u,v=edge[i].v; LL w=edge[i].w;
LL U=find(u),V=find(v);
if(U==V) continue;
LL VVV=max(value[U]+w*sz[V],value[V]+w*sz[u]);
fa[U]=V;
value[V]=VVV;
sz[V]=sz[V]+sz[U];
}
cout<<value[find(1)]<<endl;
}
return 0;
}

版权声明:来自: 代码代码猿猿AC路 http://blog.csdn.net/ck_boss

HDOJ 4424 Conquer a New Region的更多相关文章

  1. HDU 4424 Conquer a New Region

    http://acm.hdu.edu.cn/showproblem.php?pid=4424 [题目大意] 给你N个点和N-1条边的连通图,也就是说任意两点间的路径是唯一的.每条边有个权值,从一点到另 ...

  2. ZOJ 3659 & HDU 4424 Conquer a New Region (并查集)

    这题要用到一点贪心的思想,因为一个点到另一个点的运载能力决定于其间的边的最小权值,所以先把线段按权值从大到小排个序,每次加的边都比以前小,然后合并集合时,比较 x = findset(a) 做根或 y ...

  3. hdu 4424 Conquer a New Region (并查集)

    ///题意:给出一棵树.树的边上都有边权值,求从一点出发的权值和最大,权值为从一点出去路径上边权的最小值 # include <stdio.h> # include <algorit ...

  4. HDU 4424 Conquer a New Region 最大生成树

    给你一颗树 每条边有一个权值 选择一个点为中心 定义S值为中心到其它n-1个点的路径上的最小边权 求全部点S值的和 从大到小排序 每次合并2棵树 设为A集合 B集合 设A集合的最大S值的和为sumA ...

  5. hdu 4424 & zoj 3659 Conquer a New Region (并查集 + 贪心)

    Conquer a New Region Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...

  6. zoj 3659 Conquer a New Region The 2012 ACM-ICPC Asia Changchun Regional Contest

    Conquer a New Region Time Limit: 5 Seconds      Memory Limit: 32768 KB The wheel of the history roll ...

  7. ZOJ3659 Conquer a New Region 并查集

    Conquer a New Region Time Limit: 5 Seconds      Memory Limit: 32768 KB The wheel of the history roll ...

  8. hdu4424 Conquer a New Region 并查集/类似最小生成树

    The wheel of the history rolling forward, our king conquered a new region in a distant continent.The ...

  9. zoj 3659 Conquer a New Region

    // 给你一颗树 选一个点,从这个点出发到其它所有点的权值和最大// i 到 j的最大权值为 i到j所经历的树边容量的最小值// 第一感觉是树上的dp// 后面发现不可以// 看了题解说是并查集// ...

随机推荐

  1. Java程序猿之从菜鸟到职场高手的必看

    J2SE之入门引导            Java基础系列之初识JAVA                                           Java基础系列之Java语法       ...

  2. JQuery开发工具和插件

    最近的研究jquery.为大家介绍几款开发工具.能够帮助你提高开发的效率. 1.Dreamweaver Dreamweaver是建立在WEB站点和应用程序的专业工具. 将可视化工具.应用程序开发功能和 ...

  3. WebKit爬虫

    https://github.com/emyller/webkitcrawler 一个开源的项目,可以快速入门. http://spiderformysql.com/ http://crawl.gro ...

  4. Oracle单表的复杂查询

    Oracle单表的复杂查询 select avg(sal),max(sal),deptnofrom empgroupby deptno; orderby deptno; 查询工资高于500或者是岗位为 ...

  5. 软考之CPU的寻址方式

    在复习软考的时候,发现CPU的内部工作原理这一部分的内容挺重要的,现对CPU的寻址方式进行了一下总结.以下就来一一介绍一下. 我们都知道一个指令分为操作码和地址码两部分.操作码确定指令的类型.地址码确 ...

  6. HTTPDNS成为移动互联网的标配–原因与原理解析(转)

    DNS,作用就是将域名解析成IP.一个DNS查询,先从本地缓存查找,如果没有或者已经过期,就从DNS服务器查询,如果客户端没有主动设置DNS服务器,一般是从服务商DNS服务器上查找.这就出现了不可控. ...

  7. Effective C++规定45 附加代码

    这部分是额外的代码的博客.键45条款想法已经实现. #include<iostream> using namespace std; template<typename T> c ...

  8. Android kxml解析WBXML

     WAP Binary XML定义好XML片断表述出同步server地址.远程数据库名称.登录账号等等内容一.两种訪问方法: 眼下的kxml支持两种wap格式:WBXML/WML. 而有两种方法将解析 ...

  9. oracle迁移mysql数据库注意(转)

    oracle转mysql修改: 1. substr() substr( string , 0, 10) 这里测试 必须从 第一位获取 既是 substr(string , 1 , 10)2. to_c ...

  10. HTTP相关概念

    最近观看HTTP权威指南.这本书是一个小更,欲了解更多详细信息,我们不能照顾.但一些基本概念仍然应该清楚.在这里,我整理: HTTP--因特网的多媒体信使 HTTP 使用的是可靠的传输数据协议,因此即 ...