#Pragma Pack(n)与内存分配
#pragma pack(n)
解释一:
每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。
规则:
1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。
2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。
解释二:
n 字节的对齐方式 VC 对结构的存储的特殊处理确实提高 CPU 存储变量的速度,但是有时候也带来 了一些麻烦,我们也屏蔽掉变量默认的对齐方式,自己可以设定变量的对齐方式。 VC 中提供了#pragma pack(n)来设定变量以 n 字节对齐方式。n 字节对齐就是说 变量存放的起始地址的偏移量有两种情况:
第一、如果 n 大于等于该变量所占用的字 节数,那么偏移量必须满足默认的对齐方式。
第二、如果 n 小于该变量的类型所占用 的字节数,那么偏移量为 n 的倍数,不用满足默认的对齐方式。结构的总大小也有个 约束条件,分下面两种情况:如果 n 大于所有成员变量类型所占用的字节数,那么结 构的总大小必须为占用空间最大的变量占用的空间数的倍数; 否则必须为 n 的倍数。
下面举例说明其用法。 #pragma pack(push) //保存对齐状态
#pragma pack(4)//设定为 4 字节对齐
struct test { char m1; double m4; int m3; }; #pragma pack(pop)//恢复对齐状态 以上结构体的大小为 16:
下面分析其存储情况,首先为 m1 分配空间,其偏移量 为 0,满足我们自己设定的对齐方式(4 字节对齐),m1 大小为 1 个字节。接着开始 为 m4 分配空间,这时其偏移量为 1,需要补足 3 个字节,这样使偏移量满足为 n=4 的倍数(因为 sizeof(double)大于 4),m4 占用 8 个字节。接着为 m3 分配空间,这时 其偏移量为 12,满足为 4 的倍数,m3 占用 4 个字节。这时已经为所有成员变量分配 了空间,共分配了 16 个字节,满足为 n 的倍数。如果把上面的#pragma pack(4)改为 #pragma pack(8),那么我们可以得到结构的大小为 24。
大家看了这些文字描述头也一定会发麻吧,我坚持读完后,然后自己编写了一个程序:
#pragma pack(4)
struct node{
int e;
char f;
short int a;
char b;
};
struct node n;
printf("%d\n",sizeof(n));
-------12
然后结构体内部数据成员变动一下位置:
#pragma pack(4)
struct node{
char f;
int e;
short int a;
char b;};
struct node n;
printf("%d\n",sizeof(n));
12
将对齐位数强制定位2
#pragma pack(2)
struct node{
char f;
int e;
short int a;
char b;};
struct node n;
printf("%d\n",sizeof(n));
10
将对齐位数强制定位1
#pragma pack(1)
struct node{
char f;
int e;
short int a;
char b;};
struct node n;
printf("%d\n",sizeof(n));
8
看着输出结果和文字描述有点晕,下面简单说一下判定规则吧:
其实之所以有内存字节对齐机制,就是为了最大限度的减少内存读取次数。我们知道CPU读取速度比内存读取速度快至少一个数量级,所以为了节省运算花费时间,只能以牺牲空间来换取时间了。
下面举例说明如何最大限度的减少读取次数。
#pragma pack(1)
struct node{
char f;
int e;
short int a;
char b;};
struct node n;
printf("%d\n",sizeof(n));
这里强制按照1字节进行对齐,可以理解成所有的内容都是按照1字节进行读取(暂且这样理解,因为这样可以很好的理解内存对其机制),其他所有的数据成员都是1字节的整数倍,所以也就不用进行内存对其,各个成员在内存中就按照实际顺序进行排列,结构体实际长度为8
#pragma pack(2)
struct node{
char f;
int e;
short int a;
char b;};
struct node n;
printf("%d\n",sizeof(n));
这里强制按照2字节进行对齐。如果内存分布仍然是连续的话,那么int e就得三次才能读到CPU中,所以为了“讲究”int e的读取,所以在char f之后预留1BYTE,最后的char b也是如此,所以长度为10
#pragma pack(4)
struct node{
char f;
int e;
short int a;
char b;};
struct node n;
printf("%d\n",sizeof(n));
这里强制按照4字节进行对齐。所以char f后要预留3BYTE,而short int a 和 char b可以一次读取到CPU(按照4字节读取),所以长度为12
如果#pramga pack(n)中的n大于结构体成员中任何一个成员所占用的字节数,则该n值无效。编译器会选取结构体中最大数据成员的字节数为基准进行对其
#Pragma Pack(n)与内存分配的更多相关文章
- C++编译指令#pragma pack的配对使用
#pragma pack可以用来指定C++数据结构的成员变量的内存对齐数值(可选值为1,2,4,8,16). 本文主要是强调在你的头文件中使用pack指令要配对使用,以避免意外影响项目中其他源文件的结 ...
- 【C/C++开发】C++编译指令#pragma pack的配对使用
C++编译指令#pragma pack的配对使用 #pragma pack可以用来指定C++数据结构的成员变量的内存对齐数值(可选值为1,2,4,8,16). 本文主要是强调在你的头文件中使用pack ...
- #Pragma Pack与内存分配
博客转载自:https://blog.csdn.net/mylinx/article/details/7007309 #pragma pack(n) 解释一: 每个特定平台上的编译器都有自己的默认“对 ...
- C/C++中的内存对齐问题和pragma pack命令详解
这个内存对齐问题,居然影响到了sizeof(struct)的结果值.突然想到了之前写的一个API库里,有个API是向后台服务程序发送socket请求.其中的socket数据包是一个结构体.在发送soc ...
- #pragma pack(push,1)与#pragma pack(1)的区别
这是给编译器用的参数设置,有关结构体字节对齐方式设置, #pragma pack是指定数据在内存中的对齐方式. #pragma pack (n) 作用:C编译器将按照n个字节对 ...
- C语言字节对齐 __align(),__attribute((aligned (n))),#pragma pack(n)
转载地址 : http://blog.csdn.net/21aspnet/article/details/6729724 一.概念 对齐跟数据在内存中的位置有关.如果一个变量的内存地址正好位于它 ...
- (转载)关于#pragma pack(push,1)和#pragma pack(1)
转载http://www.rosoo.net/a/201203/15889.html 一.#pragma pack(push,1)与#pragma pack(1)的区别 这是给编译器用的参数设置,有关 ...
- pragma pack(非常有用的字节对齐用法说明)
强调一点: #pragma pack(4) typedef struct { char buf[3]; word a; }kk; #pragma pack() 对齐的原则是min(sizeof(wor ...
- #pragma pack(n) 的作用
在C语言中,结构是一种复合数据类型,其构成元素既可以是基本数据类型(如int.long.float等)的变量,也可以是一些复合数据类型(如数组.结构.联合等)的数据单元.在结构中,编译器为结构的每个成 ...
随机推荐
- Java的引用c++的引用和C指针的区别
Java的引用本质上就是C中的指针,而c++的引用则完全不同:有一个类 class Point { int x; int y;} 同样的一个Point p; 在Java中p表示一个引用,它等同于C语言 ...
- Android中如何将Bitmap byte裸数据转换成Bitmap图片int数据
Android中如何将Bitmap byte裸数据转换成Bitmap图片int数据 2014-06-11 10:45:14 阅读375次 我们在JNI中处理得到的BMP图片Raw数据,我们应该如何 ...
- encodeURIComponent与URLDecoder.decode用法
在输入地址栏时有时一些信息需要在地址栏看不见,我们就需要对其信息在前台转码后台解码 js:encodeURIComponent编码与解码 今天在js往jsp和servlet传参的时候出现:JavaSc ...
- elasticsearch高级配置之(二)----线程池设置
elasticsearch 配置 线程池 一个Elasticsearch节点会有多个线程池,但重要的是下面四个: 索引(index):主要是索引数据和删除数据操作(默认是cached类型) 搜索 ...
- java面向对象_接口
java接口 interface,是一个抽象类型,是抽象方法的集合,接口通常以interface来声明.一个类通过继承接口的方式,从而来继承接口的抽象方法. 接口并不是类,编写接口的方式和类很相似,但 ...
- Python中括号的区别及用途
python语言最常见的括号有三种,分别是:小括号( ).中括号[ ]和大括号也叫做花括号{ }.其作用也各不相同,分别用来代表不同的python基本内置数据类型. python中的小括号( ):代表 ...
- C#编写Windows服务程序图文教程
安装服务程序C:\WINDOWS\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe 要安装的服务程序路径(如F:\***.exe)卸载服务程序C: ...
- android4.0蓝牙使能的详细解析(转)
源:http://www.cnblogs.com/xiaochao1234/p/3818193.html 本文详细分析了android4.0 中蓝牙使能的过程,相比较android2.3,4.0中的蓝 ...
- C#中String和stringBuilder的区别
Stringbuilder类是直接用于字符串操作的类,打个比方把(1)string aa="123456";(2)aa+="789"; (3)StringBui ...
- C#对象序列化笔记
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.R ...