POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)
Description

In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor
of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node
x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common
ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest
common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers
whose nearest common ancestor is to be computed.
Output
Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5
Sample Output
4
3
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<limits.h>
#include<vector>
typedef long long LL;
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
const int maxn=10005;
int n,uu,vv;
vector<int>v[maxn];
int pre[maxn],vis[maxn];
bool root[maxn];
int find_root(int x)
{
if(pre[x]!=x)
x=find_root(pre[x]);
return pre[x];
}
void Union(int x,int y)
{
x=find_root(x);
y=find_root(y);
if(x!=y) pre[y]=x;
}
void LCA(int x)
{
for(int i=0;i<v[x].size();i++)
{
LCA(v[x][i]);
Union(x,v[x][i]);
}
vis[x]=1;
if(x==uu&&vis[vv]==1)
{
printf("%d\n",find_root(vv));
return ;
}
if(x==vv&&vis[uu]==1)
{
printf("%d\n",find_root(uu));
return ;
}
}
void init()
{
REP(i,maxn)
{
v[i].clear();
pre[i]=i;
root[i]=true;
vis[i]=0;
}
}
void solve()
{
REPF(i,1,n)
{
if(root[i]==true)
{
LCA(i);
break;
}
}
// for(int i=1;i<=n;i++)
// printf("222222 %d\n",pre[i]);
}
int main()
{
int t,a,b;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
REPF(i,1,n-1)
{
scanf("%d%d",&a,&b);
v[a].push_back(b);
root[b]=false;
}
scanf("%d%d",&uu,&vv);
solve();
}
return 0;
}
POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)的更多相关文章
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- poj 1330 Nearest Common Ancestors 单次LCA/DFS
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19919 Accept ...
- POJ 1330 Nearest Common Ancestors(裸LCA)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 39596 Accept ...
- poj 1330 Nearest Common Ancestors 裸的LCA
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- LCA POJ 1330 Nearest Common Ancestors
POJ 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24209 ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
随机推荐
- bad interpreter: No such file or directory解决
执行shell脚本时出现bad interpreter: No such file or directory错误, 一般是因为linux无法识别出Windows的DOS格式,此时只需将文件格式转换成u ...
- 基于visual Studio2013解决算法导论之029二叉搜索树
题目 二叉搜索树 解决代码及点评 #include <stdio.h> #include <malloc.h> #include <stdlib.h> ty ...
- 学习MongoDB 二:MongoDB加入、删除、改动
一.简单介绍 MongoDB是一个高性能.开源.无模式的文档型数据库,是当前NoSQL数据库产品中最热门的一种.数据被分组存储在数据集中,被称为一个集合(Collenction)和对于存储在Mongo ...
- Linux下tcpdump用法
根据使用者的定义对网络上的数据包进行截获的包分析工具.tcpdump将网络中传送的数据包的“头”完全截获下来提供分析.它支持针对网络层.协议.主机.网络或端口的过滤,并提供了and. or.not等逻 ...
- js两个日期对比大小
//适合格式(0000-00-00) //日期比较 function dateCompare(startdata, enddata) { var arr = startdata.split(&quo ...
- [转]Centos6.5使用yum安装mysql—配置MySQL允许远程登录
一.mysql安装 第1步.yum安装mysql[root@stonex ~]# yum -y install mysql-server安装结果:Installed: mysql-server ...
- Qt 状态机框架学习(没学会)
Qt状态机框架是基于状态图XML(SCXML) 实现的.从Qt4.6开始,它已经是QtCore模块的一部分.尽管它本身是蛮复杂的一套东西,但经过和Qt的事件系统(event system).信号槽(s ...
- 基于visual Studio2013解决算法导论之010快排中应用插入排序
题目 快排中引用插入排序 解决代码及点评 #include <stdio.h> #include <stdlib.h> #include <malloc.h> ...
- cmake总结
无论生活还是工作上,做过的事,需要总结下. 接触cmake,一般都会看一本书 <<cmake 实践>>. 这是cmake的入门书.我就不多说了. 下面说一下我对部分cmake命 ...
- Login oracle for external authenticate
Generally, we can login the oracle by os authentication, if we login os in a remote machine and make ...