摘要:本文以Diagonal算子为例,介绍并详细讲解如何利用迭代器对n维Tensor进行基于位置坐标的大批量数据读取工作。

本文分享自华为云社区《CANN算子:利用迭代器高效实现Tensor数据切割分块处理》,作者: CatherineWang 。

任务场景及目标

在CANN aicpu算子开发实现中,经常需要对n维Tensor进行切片(slice)、切块(dice)、转置(transpose)、交换指定维度数据(shuffle)等操作。上述操作实质上是按照指定规律依次进行数据读取,并将读取到的数据写入新的数据地址中。

本文以Diagonal算子为例,介绍并详细讲解如何利用迭代器对n维Tensor进行基于位置坐标的大批量数据读取工作。

Diagonal算子希望对指定两个维度的数据进行对角元素的提取,最终返回张量的对角线元素。本质上该算子通过属性dim1和dim2确定一个矩阵,返回该矩阵的对角元素(存在偏移量offset),并将其放置在最后一维。非dim1和dim2的维度,将会被当成batch维度处理。

常规方案:

方案一:将shape为s,元素个数为numel的 输入Tensor:x转化为Eigen::Tensor:eigen_x;对eigen_x进行shuffle操作,将dim1和dim2换至倒数第二和倒数第一维;通过reshape操作将eigen_x变化为一个三维Eigen::Tensor:reshape_x,shape=(numel/ s[dim1]/s[dim2],s[dim1],s[dim2]);对后两维数据取对角元素,并将最终数据赋值给输出数据地址。注意:由于Eigen::Tensor<typename T, int NumIndices_>不能够动态设置维度,即NumIndices_项必须是一个具体的值,因此需要提前定义对应维度的Eigen::Tensor备用。

方案二:对于一个n维的Tensor,利用n层for循环进行数据的定位读取,并取对角值。

可以看出上述两个方案对动态大小的输入计算实现处理都较为繁琐,需要提前分情况设置对应维度的Eigen::Tensor或是for循环逻辑结构,即存在维数限制。

准备知识及分析

我们知道再AICPU中,对于一个Tensor,我们能够通过GetTensorShape、GetData等函数获得Tensor形状大小、具体数据地址等信息。但我们不能通过位置坐标的形式直接获得指定位置的数据值。

1.步长

首先介绍步长(stride)这一概念(对这部分知识已掌握的可以直接跳转下一部分内容)。stride是在指定维度dim中从一个元素跳到下一个元素所必需的步长。例如,对于一个shape=(2, 3, 4, 5)的Tensor,其stride=(60, 20, 5, 1)。因此如果想要获取到上述Tensor中位置坐标为[1, 2, 1, 3]的数据,只需要找到数据地址中第108(=60*1+20*2+5*1+3)位对应值。

2.迭代器

定义迭代器PositionIterator,包含私有成员pos_和shape_,其中pos_为初始位置,shape_为标准形状。通过重载++符号,对pos_进行修改,实现迭代器的自增操作。基于上述迭代器,可以实现对给定的shape依次取位操作。如给定对于给定的shape=(d_1,d_2,…,d_n),从初始位置(0,0,…,0)开始,依次取(0,0,…,0,0), (0,0,…,0,1),…,(0,0,…,0,d_n-1), (0,0,…,1,0), (0,0,…,1,1),…, (d_1 - 1,d_2 - 1,…,d_{n-1}-1,d_{n}-1).

事实上,可以将上述迭代器理解为一种进制,对于给定的标准形状shape_=(d_1,d_2,…,d_n),第i位运算时便是逢d_i进1。同时通过PositionIterator .End()控制迭代器的结束。具体实现如下:

template <typename T>
class PositionIterator {
public:
PositionIterator(){};
~PositionIterator(){};
PositionIterator(std::vector<T> stt, std::vector<T> sh) {
if (stt.size() != sh.size()) {
PositionIterator();
} else {
for (unsigned int i = 0; i < sh.size(); i++) {
if (stt[i] >= sh[i]) {
PositionIterator();
}
}
pos_ = stt;
shape_ = sh;
}
}
PositionIterator operator++() {
pos_[shape_.size() - 1] += 1;
for (unsigned int i = shape_.size() - 1; i > 0; i--) {
if (pos_[i] / shape_[i] != 0) {
pos_[i - 1] += pos_[i] / shape_[i];
pos_[i] = pos_[i] % shape_[i];
}
}
return *this;
} bool End() {
if (pos_[0] != shape_[0]) {
return false;
}
return true;
} std::vector<T> GetPos() { return pos_; } std::vector<T> GetShape() { return shape_; } private:
std::vector<T> pos_;
std::vector<T> shape_;
};

Diagonal算子的实现

利用迭代器,在一般情况下,我们只需要两层for循环,便可以实现Diagonal算子的计算过程。第一层for循环用于确定除dim1和dim2维度的位置坐标,第二层for循环用于对dim1和dim2对应维度确定对角元素位置,通过这样的两层for循环,便可将对角元素位置确定。通过这样的取值处理,相较于Eigen实现思路,计算速度有着明显的提升,且无维度限制,st测试结果对比如下:

具体实现可参见如下代码:

template <typename T>
uint32_t DiagonalCpuKernel::DoComputeType(CpuKernelContext &ctx,
const int64_t &offset,
const int64_t &dim1,
const int64_t &dim2) {
// Get the inuput and output
Tensor *input_x = ctx.Input(0);
Tensor *y = ctx.Output(0);
// Get some information of input
auto x_shape = input_x->GetTensorShape();
std::vector<int64_t> x_shape_ = x_shape->GetDimSizes();
const int64_t x_dim = x_shape->GetDims();
auto dataptr = reinterpret_cast<T *>(ctx.Input(0)->GetData());
auto y_dataptr = reinterpret_cast<T *>(y->GetData());
// Compute
// 首先计算出对角线元素个数
int64_t dsize = OffsetSize(offset, dim1, dim2, x_shape_);
// 生成输入Tensor的步长向量x_stride
std::vector<int64_t> x_stride = ConstructStride<int64_t>(x_shape_);
// 分情况讨论,2维和大于2维的情况
if (x_dim != N2) {
//set the vx_shape and vx_stride
// 生成x_shape和x_stride中除去dim1和dim2对应值的vx_shape与vx_stride
std::vector<int64_t> vx_shape, vx_stride;
for (unsigned int tmp_dim = 0; tmp_dim < x_shape_.size(); tmp_dim++) {
if (tmp_dim != dim1 && tmp_dim != dim2) {
vx_shape.push_back(x_shape_[tmp_dim]);
vx_stride.push_back(x_stride[tmp_dim]);
}
}
// set the y_shape, y_stride, vy_stride
// 生成输出Tensor的形状及步长向量:y_shape和y_stride
std::vector<int64_t> y_shape = vx_shape;
y_shape.push_back(dsize);
std::vector<int64_t> y_stride =
ConstructStride<int64_t>(y_shape);
// 生成输出Tensor的出去最后一维的步长向量:vy_stride
std::vector<int64_t> vy_stride = y_stride;
vy_stride.pop_back();
// 读取对角数据
std::vector<int64_t> v_start(vx_shape.size(), 0);
for (PositionIterator<int64_t> myiter(v_start, vx_shape); !myiter.End();
++myiter) {
// 利用迭代器确定除dim1和dim2维度的位置坐标
auto p = myiter.GetPos();
// 通过步长向量和位置坐标计算出输入和输出的基础位置值base_pos1和outbase_pos
int64_t base_pos1 = MulSum<int64_t>(p, vx_stride);
int64_t outbase_pos = MulSum<int64_t>(p, vy_stride);
for (int i = 0; i < dsize; i++) {
// 结合前面计算出的基础位置值,对dim1和dim2对应维度确定对角元素位置,并赋值给输出数据地址(get_data涉及对上对角还是下对角取元素,不影响对迭代器作用的理解)
int64_t base_pos2 = i * (x_stride[dim1] + x_stride[dim2]);
int64_t arr[N2] = {x_stride[dim1], x_stride[dim2]};
y_dataptr[outbase_pos + i] =
get_data(base_pos1 + base_pos2, offset, arr, dataptr);
}
}
} else {
for (int i = 0; i < dsize; i++) {
int64_t base_pos = i * (x_stride[dim1] + x_stride[dim2]);
int64_t arr[N2] = {x_stride[dim1], x_stride[dim2]};
y_dataptr[i] = get_data(base_pos, offset, arr, dataptr);
}
}
return KERNEL_STATUS_OK;
}

迭代器的其他用法

1、数据切条:如Sort算子中,用迭代器对Tensor数据关于tmp_axis维度进行取条,以进行后续的排序操作。

for (position_iterator<int64_t> mit(v_start, v_shape); !mit.end(); ++mit) {
auto p = mit.get_pos();
int axis_len = input_shape_[tmp_axis];
std::vector<ValueIndex<T>> data_(axis_len);
int base_pos = mul_sum<int64_t>(p, v_stride);
for (int32_t i = 0; i < axis_len; i++) {
data_[i].value = x_dataptr[base_pos + i * input_stride[tmp_axis]];
data_[i].index = i;
}

2、数据切块:切块处理可以利用两个迭代器循环叠加,也可以利用一个迭代器和两个坐标位置for循环

3、关于指定维度dim,对Tensor降维拆分为N子Tensor:如UniqueConsecutive算子中,首先需要关于属性axis维,将原本的Tensor数据拆分为input_shape[axis]个子Tensor(此处用vector存储Tensor中的数据)。

std::vector<std::vector<T1>> data_;
for (int64_t i = 0; i < dim0; i++) {
std::vector<T1> tmp_v1;
for (PositionIterator<int64_t> mit(v_start, v_shape); !mit.End(); ++mit) {
auto pos = mit.GetPos();
tmp_v1.push_back(
x_dataptr[MulSum<int64_t>(pos, v_stride) + i * input_stride[axis]]);
}
data_.push_back(tmp_v1);
}

点击关注,第一时间了解华为云新鲜技术~

CANN算子:利用迭代器高效实现Tensor数据切割分块处理的更多相关文章

  1. select2,利用ajax高效查询大数据列表(可搜索、可分页)

    二.导入css和js到网站上 1.使用CDN,节省自己网站的流量 ? 1 2 <link href="https://cdnjs.cloudflare.com/ajax/libs/se ...

  2. python 迭代器链式处理数据

    pytorch.utils.data可兼容迭代数据训练处理,在dataloader中使用提高训练效率:借助迭代器避免内存溢出不足的现象.借助链式处理使得数据读取利用更高效(可类比操作系统的资源调控) ...

  3. 在Winform开发框架中,利用DevExpress控件实现数据的快速录入和选择

    在实际的项目开发过程中,有好的控件或者功能模块,我都是想办法尽可能集成到我的WInform开发框架中,这样后面开发项目起来,就可以节省很多研究时间,并能重复使用,非常高效方便.在我很早之前的一篇博客& ...

  4. 利用PHPExcel读取Excel的数据和导出数据到Excel

    PHPExcel是一个PHP类库,用来帮助我们简单.高效实现从Excel读取Excel的数据和导出数据到Excel.也是我们日常开发中,经常会遇到的使用场景.比如有个客户信息表,要批量导出发给同事,我 ...

  5. 大数据学习day34---spark14------1 redis的事务(pipeline)测试 ,2. 利用redis的pipeline实现数据统计的exactlyonce ,3 SparkStreaming中数据写入Hbase实现ExactlyOnce, 4.Spark StandAlone的执行模式,5 spark on yarn

    1 redis的事务(pipeline)测试 Redis本身对数据进行操作,单条命令是原子性的,但事务不保证原子性,且没有回滚.事务中任何命令执行失败,其余的命令仍会被执行,将Redis的多个操作放到 ...

  6. Netty 如何高效接收网络数据?一文聊透 ByteBuffer 动态自适应扩缩容机制

    本系列Netty源码解析文章基于 4.1.56.Final版本,公众号:bin的技术小屋 前文回顾 在前边的系列文章中,我们从内核如何收发网络数据开始以一个C10K的问题作为主线详细从内核角度阐述了网 ...

  7. 利用SQl对数据库实行数据拆分与组合

    利用SQl对数据库实行数据拆分与组合实现提供以下几种方案: 方法一: WITH CTE AS (SELECT A.Id,A.[Uid],UserName FROM (SELECT A.[id], RE ...

  8. 谈谈Java利用原始HttpURLConnection发送POST数据

    这篇文章主要给大家介绍java利用原始httpUrlConnection发送post数据,设计到httpUrlConnection类的相关知识,感兴趣的朋友跟着小编一起学习吧 URLConnectio ...

  9. 利用flashback query 恢复表数据

    flashback query可以查询过去某个时间点对象的状态,从而可以利用此来进行恢复数据 1 准备测试数据 用普通用户创建一个表,表中插入部分数据: SQL> show user USER ...

随机推荐

  1. Day 006:PAT练习--1005 Spell It Right (20 分)

    上星期一直在写报告乱七八糟的,从今天开始不刷乙级的了,还是多刷甲级进步来得快一点! 显而易见,该题的关键在于将输入之和的每一位从高到低输出,这里我们发现题意中的输入数的范围为0-10^100,显然我们 ...

  2. web框架的本质、MVC框架MTV框架的介绍

    1.web框架的本质 所有的Web应用本质上就是一个socket服务端,而用户的浏览器就是一个socket客户端,基于请求做出响应,客户都先请求,服务端做出对应的响应,按照http协议的请求协议发送请 ...

  3. 手脱NsPacK壳

    1.查壳 使用PEiD未能检测到壳信息,这时,我们更换其他工具 从图中可以看到壳的信息为[NsPacK(3.x)[-]] 2.百度壳信息 北斗程序压缩(Nspack)是一款压缩壳.主要的选项是:压缩资 ...

  4. Solon 1.7.6 发布,更现代感的应用开发框架

    相对于 Spring Boot 和 Spring Cloud 的项目 启动快 5 - 10 倍 qps 高 2- 3 倍 运行时内存节省 1/3 ~ 1/2 打包可以缩小到 1/2 ~ 1/10(比如 ...

  5. python入门基础知识二(字符串的常用操作方法)

    下标/索引: a = "I'm interested in Python." print(a[4]) i # 英文的字符串每一个下标/索引对应一个字母(含标点) a = '我喜欢p ...

  6. vue大型电商项目尚品汇(前台篇)day01

    学完vue2还是决定先做一个比较经典,也比较大的项目来练练手好一点,vue3的知识不用那么着急,先把vue2用熟练了,vue3随时都能学. 这个项目确实很经典包含了登录注册.购物车电商网站该有的都有, ...

  7. 20212115朱时鸿 《python程序设计》实验四报告

    课程:<Python程序设计>班级: 2121姓名: 朱时鸿学号:20212115实验教师:王志强实验日期:2022年5月28日必修/选修: 公选课 1.实验内容 Python综合应用:爬 ...

  8. Docker容器:将带UI的程序直接转为Web应用,so easy

    摘要:使用Docker容器,将带UI的程序,直接转换为Web应用.很方便,跟大家分享一下. 本文分享自华为云社区<使用Docker容器,将带UI的程序,直接转为Web应用>,作者:tsjs ...

  9. 低代码前景可期,JNPF灵活易用,用智能定义新型办公模式

    JNPF是引迈信息从事多年软件研发和产品服务的一次时代性的技术革新产物,是集SaaS服务.工作流引擎.一站式低代码开发.支持多端使用于一体的快速开发平台. 强大易用 JNPF将 Excel. Acce ...

  10. SpringCloud 服务治理

    目录 1. Eureka 1.1 Eureka 介绍 1.2 Eureka 快速入门 父工程 Eureka Server(子工程) pom.xml 启动类 application.yml Eureka ...