有效提升Python代码性能的三个层面
使用python进入一个熟练的状态之后就会思考提升代码的性能,尤其是python的执行效率还有很大提升空间(委婉的说法)。面对提升效率这个话题,python自身提供了很多高性能模块,很多大牛开发出了高效第三方包,可谓是百花齐放。下面根据我个人使用总结出提升性能的几个层面和相关方法。
python代码优化:
- 语法层面
- 高效模块
- 解释器层面
语法层面
- 变量定义
- 数据类型
- 条件判断
- 循环
- 生成器
变量定义
- 多使用局部变量少使用全局变量,命名空间中局部变量优先搜索
条件判断
- 可以使用字典的key value特性,直接用key命中条件,避免if判断
- 用in操作替换if else判断
- 使用any 或 all 将多个判断一起处理,减少if else的分支
- if条件的短路特性。if a or b这种判断中,如果a是True就不会判断b,所以将True条件写在前面可以节省判断时间。同理 and 判断将假写在前面,后面一个条件不判断
数据类型
- 使用dict 或set查找,替换list或tuple
- 集合的交并补差操作效率非常高。for循环和集合都可以处理的选择集合解决,集合的效率远高于循环
循环
- 用for循环代替while循环,for循环比while循环快
- 使用隐式for循环代替显式for循环。如sum,map,filter,reduce等都是隐式for循环。隐式循环快于显式循环
- 尽量不要打断循环。打断循环的放在外面。有判断条件的语句和与循环不相关的操作语句尽量放在for外面
- 应当将最长的循环放在最内层,最短的循环放在最外层,以减少CPU跨切循环层的次数
- 使用生成式替换循环创建
合理使用迭代器和生成器
需要迭代出大量数据的场景,不需要将所有数据创建出来,合理使用生成器减少内存消耗
items_gen = (i for i in range(5000))
>>> items_gen.__sizeof__()
96
items_list = [i for i in ragne(5000)]
>>> items_list.__sizeof__()
43016
高效模块
- collections 数据增强模块
- itertools 高效迭代模块
- array 高效数组
- functool 用于处理函数的高阶函数包
collections
- Counter: 高效的统计库
- defaultdict:带默认值的字典
- ChainMap:高效组合字典的库
- deque: 双端队列,高效插入删除
详细使用参见另一篇专门讲collections的文章 Python原生数据结构增强模块collections
itertools
- chain:多个可迭代对象构建成一个新的可迭代对象
- groupby:按照指定的条件分类,输出条件和符合条件的元素
- from_iteratorable:一个迭代对象中将所有元素类似于chain一样,统一返回
- islice:对迭代器进行切片,能指定start和stop以及步长
详细使用参见另一篇专门讲itertools的文章Python高性能工具迭代标准库itertools
array
array 模块是python中实现的一种高效的数组存储类型。
它和list相似,但是所有的数组成员必须是同一种类型,在创建数组的时候,就确定了数组的类型。
functool
functools.lru_cache
对函数做缓存
lru_cache 是一个装饰器,为函数提供缓存功能。被装饰的函数以相同参数调用时直接返回上一次的结果。
不做缓存
import time
def fibonacci(n):
"""斐波那契函数"""
if n < 2:
return n
return fibonacci(n - 2) + fibonacci(n - 1)
start = time.time()
res = fibonacci(40)
end = time.time()
print(res)
print(end - start)
102334155
32.14816737174988
做缓存
import time
from functools import lru_cache
@lru_cache
def fibonacci(n):
"""斐波那契函数"""
if n < 2:
return n
return fibonacci(n - 2) + fibonacci(n - 1)
start = time.time()
res = fibonacci(40)
end = time.time()
print(res)
print(end - start)
102334155
0.00020623207092285156
使用注意:
- 缓存是按照参数作为键。调用函数时任意一个参数发生变化都不会返回之前缓存结果
- 所有参数必须可哈希hash。也就是说参数只能是不可变对象
解释器层面:
减少python执行过程
python 代码的执行过程为:
- 编译器将源码编译成中间状态的字节码
- 解释器执行字节码,将字节码转成机器码在cpu上运行
python慢的原因主要是因为解释器。解决办法有两个:
一是解决办法是使用C/C++语言重写Python函数,但是这要求程序员对C/C++语言熟悉,且调试速度慢,不适合绝大多数Python程序员。
另外一种非常方便快捷的解决办法就是使用Just-In-Time(JIT)技术。
Just-In-Time(JIT)技术为解释语言提供了一种优化,它能克服上述效率问题,极大提升代码执行速度,同时保留Python语言的易用性。使用JIT技术时,JIT编译器将Python源代码编译成机器直接可以执行的机器语言,并可以直接在CPU等硬件上运行。这样就跳过了原来的虚拟机,执行速度几乎与用C语言编程速度并无二致。
Numba是一个针对Python的开源JIT编译器,由Anaconda公司主导开发,可以对Python原生代码进行CPU和GPU加速。
import time
def fun(x):
total = 0
start = time.time()
for i in range(1,x+1):
total += i
end = time.time()
print(total)
print(end - start)
fun(100000000)
5000000050000000
5.934630393981934
import time
from numba import jit, int32
@jit(int32(int32))
def fun(x):
total = 0
start = time.time()
for i in range(1,x+1):
total += i
end = time.time()
print(total)
print(end - start)
fun(100000000)
5000000050000000
0.1186532974243164
速度有60倍提升
有效提升Python代码性能的三个层面的更多相关文章
- Python 代码性能优化技巧(转)
原文:Python 代码性能优化技巧 Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构.优化. ...
- [转] Python 代码性能优化技巧
选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化 ...
- Python代码性能优化技巧
摘要:代码优化能够让程序运行更快,可以提高程序的执行效率等,对于一名软件开发人员来说,如何优化代码,从哪里入手进行优化?这些都是他们十分关心的问题.本文着重讲了如何优化Python代码,看完一定会让你 ...
- Python 代码性能优化技巧
选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化 ...
- 使用 profile 进行python代码性能分析
定位程序性能瓶颈 对代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,c ...
- 使用line_profiler对python代码性能进行评估优化
性能测试的意义 在做完一个python项目之后,我们经常要考虑对软件的性能进行优化.那么我们需要一个软件优化的思路,首先我们需要明确软件本身代码以及函数的瓶颈,最理想的情况就是有这样一个工具,能够将一 ...
- python 代码性能分析 库
问题描述 1.Python开发的程序在使用过程中很慢,想确定下是哪段代码比较慢: 2.Python开发的程序在使用过程中占用内存很大,想确定下是哪段代码引起的: 解决方案 使用profile分析分析c ...
- 编写高质量的Python代码系列(三)之类与继承
用Python进行编程时,通常需要编写心累,并定义这些类应该如何通过其接口及继承体系与外界交互.本节讲解如何使用类和继承来表达对象所以更具备的行为. 第二十二条:尽量用辅助类来维护程序的状态,而不要用 ...
- Python实现C代码统计工具(三)
目录 Python实现C代码统计工具(三) 声明 一. 性能分析 1.1 分析单条语句 1.2 分析代码片段 1.3 分析整个模块 二. 制作exe Python实现C代码统计工具(三) 标签: Py ...
随机推荐
- RTSP实例解析
以下是某地IPTV的RTSP协商过程: 1.DESCRIBE 请求: //方法和媒体URL DESCRIBE rtsp://118.122.89.27:554/live/ch1008312159479 ...
- [免费下载应用]iNeuKernel.Ocr 图像数据识别与采集原理和产品化应用
目 录 1..... 应用概述... 2 2..... 免费下载试用... 2 3..... 视频介绍... 2 4..... iNeuLink.Ocr图像数据采集应用... 2 5... ...
- mysql获取表中的字段名
转载请注明来源:https://www.cnblogs.com/hookjc/ SELECT COLUMN_NAME FROM 'information_schema'.'COLUMNS' where ...
- Media Player播放
转载请注明来源:https://www.cnblogs.com/hookjc/ <object id="player" height="64" width ...
- CentOS 6.4x64安装部署zabbix-2.4.5
以下内容来自于http://www.iyunv.com/thread-62087-1-1.html 补充一点,按照原文安装万之后zabbix页面会提示 zabbix server is not run ...
- iOS测试模板
测试模板,每次写一个功能测试Demo时总是要新建一个工程,导入一些第三方库,比较麻烦,先提供一个测试模板,提供一些常用第三方库,自己就不用导了 使用Cocospod管理第三方库 常用(其他自行添加) ...
- python基础语法_闭包详解
https://www.cnblogs.com/Lin-Yi/p/7305364.html 闭包有啥用??!! 很多伙伴很糊涂,闭包有啥用啊??还这么难懂! 3.1装饰器!!!装饰器是做什么的??其 ...
- PHP+mysql真题
PHP+mysql真题 来自<PHP程序员面试笔试宝典>,涵盖了近三年了各大型企业常考的PHP面试题,针对面试题提取出来各种面试知识也涵盖在了本书. [真题215] 按要求写出SQL实现. ...
- Linux编译安装升级bash5.1
线上服务器有次做漏洞扫描时,被扫描出有bash漏洞.平时还是比较少遇到有bash的漏洞,好在编译升级比较简单. 测试环境系统:CentOS.Ubuntu 一.下载官网最新bash版本 bash官网下载 ...
- 我们一起来学Shell - shell的循环控制
文章目录 Shell 循环之 for 语句 Shell 循环之 while 语句 Shell 循环之 until 语句 Shell 循环控制 break指令 continue 指令 exit 指令 s ...