我也不想学筛法了,可你考试时候出一个新筛法就不厚道了吧,我还开始以为这是杜教筛。。。

$tips:$学完杜教筛立马学$Powerful \ Number$筛法,此筛法强悍如斯

$Powerful \ Number$筛法

算是杜教筛的究极版$?$

考虑筛积性函数$f$前缀和

求函数$F(n)$

$F(n)=\sum_{i=1}^{n}f(i)$

时间复杂度$O(\sqrt{n})$

主要是基于$PN$的筛法

定义$:$

$PN:n$质因数分解,$n=\prod_{i=1}^{m}p_i^{e_i}$

当满足前$m$个质数都在$n$里面出现多于一次

性质$1:$

所有的$PN$都能表示为$a^2\times b^3$

显然任意一个大于$2$的数字可以被分成$2\times k_1+3\times k_2$

性质$2:$

有关时间复杂度为$O(\sqrt{n})$的性质

$n$以内的$PN$至多有$\sqrt{n}$个

对于函数$\sqrt{n/x^2}^3$在$[1,\sqrt{n}]$积分

$ \displaystyle\int _{1}^{\sqrt{n}} \sqrt{n/x^2}^3=\sqrt{n}$

然后得证

筛法$:$

首先需要构造一个函数$g$

满足在数字为质数时$g(p)=f(p)$

并且$G(n)=\sum_{i=1}^{n}g(i)$易得

构造函数$h=f/g,$这里$/$表示狄利克雷卷积除法

$h(1)=1$

对于素数$p$

$f(p)=g(1)h(p)+g(p)h(1)$

$f(p)=h(p)+g(p)$

$g(p)=f(p)$

$h(p)=0$

由于$h$是积性函数,且所有素数位置的$h$等于$0$,那么除了$PN$的位置,其余的位置都是$0$

还记得杜教筛是$h=f*g$

$f=g*h$

$F(n)=\sum_{i=1}^{n} f(i)$

$F(n)=\sum_{i=1}^{n}(g*h)(i)$

$F(n)=\sum_{i=1}^{n}\sum_{d|i}h(d)g(i/d)$

$F(n)=\sum_{d=1}^{n}h(d)\sum_{i=1}^{n/d}g(i)$

$F(n)=\sum_{d=1}^{n}h(d)G(n/d)$

由于除了$PN$的其他所有位置全部为$0$

那么$:$

$F(n)=\sum_{d=1,d\ is \ PN}^{n}h(d)G(n/d)$

显然的那么,可以在$O(\sqrt{n})$的时间内得到$F(n)$

只需要得到需要的$h(d)\times G(n/d)$

考虑$h$是积性函数,那么我们又知道$h(p)=0$

$h=f/g$

今天考试这个题$h$可以打表发现$x>2,h(x)$不变

还有一般方法

$f=g * h$

$f(p^c)=\sum_{i=0}^{c}g(p^i)h(p^{c-i})$

枚举$p$和指数$c$然后计算

一般过程$:$

$1.$构造$g$

$2.$构造快速求$G$的方法

$3.$计算$h(p^c)$

$4.$搜索$PN$,过程中累加答案

$5.$得到结果

Powerful Number 筛法的更多相关文章

  1. Note - Powerful Number

    Powerful Number   对于 \(n\in\mathbb N_+\),若不存在素数 \(p\) 使得 \(p\mid n~\land~p^2\not\mid n\),则称 \(n\) 为 ...

  2. 利用powerful number求积性函数前缀和

    好久没更博客了,先水一篇再说.其实这个做法应该算是杜教筛的一个拓展. powerful number的定义是每个质因子次数都 $\geq 2$ 的数.首先,$\leq n$ 的powerful num ...

  3. powerful number求积性函数前缀和

    算法原理 本文参考了 zzq's blog . \(\text{powerful number}\) 的定义是每个质因子次数都 \(\ge 2\) 的数,有个结论是 \(\ge n\) 的 \(\te ...

  4. Powerful Number 筛学习笔记

    Powerful Number 筛学习笔记 用途 \(Powerful\ number\) 筛可以用来求出一类积性函数的前缀和,最快可以达到根号复杂度. 实现 \(Powerful\ number\) ...

  5. Powerful Number 学习笔记

    定义 对于一个正整数 \(n\) ,若完全分解之后不存在指数 \(=1\) ,则称 \(n\) 为 \(\text{Powerful Number}\) . 可以发现的是,在 \([1,n]\) 中, ...

  6. [笔记] Powerful Number 筛

    定义 Powerful Number(以下简称 PN)筛类似于杜教筛,可以拿来求一些积性函数的前缀和. 要求: 假设现在要求积性函数 \(f\) 的前缀和 \(F(n)=\sum_{i=1}^nf(i ...

  7. 【HDOJ6623】Minimal Power of Prime(Powerful Number)

    题意:给定大整数n,求其质因数分解的最小质数幂 n<=1e18 思路:常规分解算法肯定不行 考虑答案大于1的情况只有3种:质数的完全平方,质数的完全立方,以及p^2*q^3,p,q>=1三 ...

  8. powerful number筛

    心血来潮跑来实现以下这个东西 我们应该知道杜教筛的理论是 \(f * g=h\),那么问题在于如何找 \(g\). 之前的blog应该提到过可以令 \(g(p)=-f(p)\),这样一来 \(h\) ...

  9. $dy$讲课总结

    字符串: 1.广义后缀自动机(大小为\(m\))上跑一个长度为\(n\)的串,所有匹配位置及在\(parent\)树上其祖先的数量的和为\(min(n^2,m)\),单次最劣是\(O(m)\). 但是 ...

随机推荐

  1. 299. Bulls and Cows - LeetCode

    Question 299. Bulls and Cows Solution 题目大意:有一串隐藏的号码,另一个人会猜一串号码(数目相同),如果号码数字与位置都对了,给一个bull,数字对但位置不对给一 ...

  2. 455. Assign Cookies - LeetCode

    Question 455. Assign Cookies Solution 题目大意:数组g的大小表示有几个小孩,每个元素表示小孩的食量,数组s的大小表示有多少个饼干,每个元素的大小表示每个饼干的大小 ...

  3. 「VMware校园挑战赛」小V的和式

    Description 给定 \(n,m\) ,求 \[\sum\limits_{x_1=1}^{n}\sum\limits_{x_2=1}^{n}\sum\limits_{y_1=1}^{m}\su ...

  4. 关于『Markdown』:第二弹

    关于『Markdown』:第二弹 建议缩放90%食用 道家有云:一生二,二生三,三生万物 为什么我的帖子不是这样 各位打工人们! 自从我学了Markdown以来 发现 Markdown 语法真的要比 ...

  5. Kafka消息的压缩机制

    最近在做 AWS cost saving 的事情,对于 Kafka 消息集群,计划通过压缩消息来减少消息存储所占空间,从而达到减少 cost 的目的.本文将结合源码从 Kafka 支持的消息压缩类型. ...

  6. 我是一个Dubbo数据包...

    hello,大家好呀,我是小楼! 今天给大家带来一篇关于Dubbo IO交互的文章,本文是一位同事写的文章,用有趣的文字把枯燥的知识点写出来,通俗易懂,非常有意思,所以迫不及待找作者授权然后分享给大家 ...

  7. String-StringBuffer-StringBuilder,Comparable-comparator

    String 1.String是final类,不可被继承 2.内部是value[]的数组 private final char value[]; 3.不可变字符串 String s1 = " ...

  8. 03 转换css元素的类别

    03 转换css元素的类别 通过设置display属性 属性 作用 block 块级 inline 行内 inline-block 行内块级 接来下 就跟着小demo来学习吧! 不懂可以看看!!!什么 ...

  9. sort基本用法

    sort 选项 -u --去除重复行 -r --降序排列,默认是升序 -o --由于sort默认是把结果输出到标准输出,所以需要用重定向才能将结果写入文件,形如sort filename > n ...

  10. Nacos 的安装与服务的注册

    Nacos 的安装与服务的注册 我们都知道naocs是一个注册中心,那么注册中心是什么呢? 什么是注册中心? 它类似与一个中介角色(不收费的良心中介), 在微服务中起纽带的作用,它提供了服务和服务地址 ...