Numpy库基础___五
Numpy数据存取
•NumPy的随机数函数
a = np.random.rand(1,2,3)
print(a)
#[[[0.03339719 0.72784732 0.47527802]
# [0.6456671 0.65639799 0.01300073]]] a = np.random.randn(1,2,3)
print(a)
#[[[ 0.59115211 -0.40289048 1.34532466]
# [-0.04616715 -0.64066822 -1.09722129]]] a = np.random.randint(100,200,(3,4))
print(a)
#[[161 131 187 134]
# [156 114 104 180]
# [182 163 158 121]] #随机数种子,10是给定的种子值
np.random.seed(10)
a = np.random.randint(100,200,(3,4))
print(a)
#[[109 115 164 128]
# [189 193 129 108]
# [173 100 140 136]]a = np.random.randint(100,200,(3,4))
print(a)
#[[184 199 152 144]
# [173 171 179 144]
# [133 105 197 143]] np.random.shuffle(a)
print(a)
#[[173 171 179 144]
# [133 105 197 143]
# [184 199 152 144]] b = np.random.permutation(a)
#[[173 171 179 144]
# [133 105 197 143]
# [184 199 152 144]]
print(b)
#[[133 105 197 143]
# [173 171 179 144]
# [184 199 152 144]] a = np.random.randint(100,200,(8,))
print(a)
#[131 195 130 165 177 107 197 132] b = np.random.choice(a,(3,2))
print(b)
#[[195 107]
# [177 197]
# [130 107]] b = np.random.choice(a,(3,2),replace=False)
#[[107 130]
# [197 132]
# [195 131]] #加权,元素出现次数越多,被抽取的概率越高
b = np.random.choice(a,(3,2),p=a/np.sum(a))
print(b)
#[[197 130]
# [131 130]
# [131 130]]u = np.random.uniform(0,10,(3,4))
print(u)
#[[7.49328353 4.35990777 8.19266316 5.02229727]
# [2.21122875 9.61785352 9.90294149 2.44401573]
# [3.88367203 9.22037768 7.87306998 2.00241521]] u = np.random.normal(10,5,(3,4))
print(u)
#[[13.44007699 10.5502136 14.79616224 -2.17381553]
# [10.42238979 10.12351539 2.8561042 16.78322252]
# [11.90679396 6.75343566 8.01259211 14.96874378]] u = np.random.poission(2,(3,4))
print(u)
#[[4 0 1 2]
# [2 2 3 2]
# [0 0 2 3]]
•NumPy的统计函数
a = np.arange(15).reshape(3,5)
print(a)
#[[ 0 1 2 3 4]
# [ 5 6 7 8 9]
# [10 11 12 13 14]]
print(np.sum(a))
#105
print(np.sum(a,axis=0))
#[15 18 21 24 27]
print(np.sum(a,axis=1))
#[10 35 60] print(np.mean(a))
#7.0
print(np.mean(a,axis=0))
#[5. 6. 7. 8. 9.]
print(np.mean(a,axis=1))
#[ 2. 7. 12.] print(np.average(a))
#7.0
print(np.average(a,axis=0,weights=[1,2,3]))
#[ 6.66666667 7.66666667 8.66666667 9.66666667 10.66666667]a = np.arange(12).reshape(3,4)
print(a)
#[[ 0 1 2 3]
# [ 4 5 6 7]
# [ 8 9 10 11]] print(np.min(a))
#0 print(np.max(a))
#11 print(np.argmin(a))
#0 print(np.argmax(a))
#11 print(np.unravel_index(10,(4,3)))
#(3,1) print(np.unravel_index(np.argmax(a),(4,3)))
#(3,2) print(np.ptp(a))
#11 print(np.median(a))
#5.5
•NumPy的梯度函数
- np.gradient(f):计算数组f中元素的梯度,当f为多维时,返回每个维度梯度
梯度:连续值之间的变化率,即斜率
X坐标轴连续三个x坐标对应的Y轴值:a,b,c其中b的梯度时(c-a)/2
a = np.random.randint(0,20,(5,))
print(a)
#[ 2 10 11 14 12] print(np.gradient(a))
#[ 8. 4.5 2. 0.5 -2. ]
Numpy库基础___五的更多相关文章
- Numpy库基础___四
Numpy数据存取 •数据的csv文件的存取 只能有效存取和读取一维和二维数据 a = np.arange(100).reshape(5,20) #用delimiter分割,默认为空格 np.save ...
- Numpy库基础___一
ndarray一个强大的N维数组对象Array •ndarray的建立(元素默认浮点数) 可以利用list列表建立ndarray import numpy as np list =[0,1,2,3] ...
- Numpy库基础___三
ndarray一个强大的N维数组对象Array •ndarray的操作 索引 a = np.arange(24).reshape((2,3,4)) print(a) #[[[ 0 1 2 3] # [ ...
- Numpy库基础___二
ndarray一个强大的N维数组对象Array •ndarray的变换 x.reshape(shape)重塑数组的shape,要求元素的个数一致,不改变原数组 x = np.ones((2,3,4), ...
- Numpy库的学习(五)
今天继续学习一下Numpy库,废话不多说,整起走 先说下Numpy中,经常会犯错的地方,就是数据的复制 这个问题不仅仅是在numpy中有,其他地方也同样会出现 import numpy as np a ...
- $python数据分析基础——初识numpy库
numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2 假如有如下几组体重和身高数据,让求每组数据的BMI值: ...
- Python基础——numpy库的使用
1.numpy库简介: NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生. 2.numpy库使用: 注:由于深度学习中存在大量的 ...
- 数据分析与科学计算可视化-----用于科学计算的numpy库与可视化工具matplotlib
一.numpy库与matplotlib库的基本介绍 1.安装 (1)通过pip安装: >> pip install matplotlib 安装完成 安装matplotlib的方式和nump ...
- numpy库的学习笔记
一.ndarray 1.numpy 库处理的最基础数据类型是由同种元素构成的多维数组(ndarray),简称“数组”. 2.ndarray是一个多维数组的对象,ndarray数组一般要求所有元素类型相 ...
随机推荐
- 实现反向代理客户端IP透传
默认情况下,使用反向代理时,后端服务器只能看到访问是从反向代理服务器的IP,无法真正识别到客户端IP.通过配置IP透传实现后端服务器识别到客户端真实IP. 一.Apache后端服务器部署 1.1 安装 ...
- F WebDriver and 环境配置
https://seleniumhq.github.io/docs/wd.html WEBDRIVER The biggest change in Selenium recently has been ...
- 5、Linux基础--etc(文件系统)、启动模式、单用户模式修改密码、安装目录、日志目录、状态目录
笔记 1.晨考 1.存放系统配置文件的目录 /etc 2.存储系统实时运行状态的目录 /proc 3.存储系统硬件接口的目录 /dev 4.查看系统挂载情况的命令 df -h 5.系统网卡文件路径 / ...
- WebGL 与 WebGPU比对[4] - Uniform
目录 1. WebGL 1.0 Uniform 1.1. 用 WebGLUniformLocation 寻址 1.2. 矩阵赋值用 uniformMatrix[234]fv 1.3. 标量与向量用 u ...
- 私有化轻量级持续集成部署方案--04-私有代码仓库服务-Gitea
提示:本系列笔记全部存在于 Github, 可以直接在 Github 查看全部笔记 企业级最流行的私有代码仓库是 Gitlab, 一开始我也打算部署 Gitlab作为私有代码仓库. 但部署完 d 成后 ...
- ARM7、ARM9、ARM11、ARM-Cortex系列的关系
参考资料: https://zhuanlan.zhihu.com/p/92315825 https://zhuanlan.zhihu.com/p/82337495 ARM是Advanced RISC ...
- Java 8 stream的详细用法
话不多说,直接看代码演示 /** * @description: stream 练习 * @author: hwx * @date: 2022/02/10 **/ public class strea ...
- nginx域名转发
场景1:因服务器限制,所以只对外开放了一个端口,但是需要请求不同的外网环境,所以在中转服务器上用nginx做了一次转发 实现: server { listen 8051; server_name lo ...
- OpenGL/ES关于像素渲染
知道着色器的人都会知道一个东西,那就是着色器分为顶点着色器与片元着色器.在移动端真正渲染到手机屏幕上的无非是一些颜色值,但是一个片元是大于一个像素的,一个片元可能包含多个像素,当然一个片元所包含的像素 ...
- RIP协议测试——信而泰网络测试仪实操
一.简介: RIP(Routing Information Protocol,路由信息协议)是一种内部网关协议(IGP),是一种动态路由选择协议,用于自治系统(AS)内的路由信息的传递.RIP协议基于 ...