论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》
论文信息
论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation
论文作者:Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, Zhibo Chen
论文来源:NeurIPS 2021
论文地址:download
论文代码:download
1 域对抗介绍
域对抗思想:
$\begin{array}{l}\underset{D}{\operatorname{argmin}} \mathcal{L}_{D} \\\underset{G}{\operatorname{argmin}} \mathcal{L}_{c l s}-\mathcal{L}_{D} \\\end{array}$
即:
- $\mathrm{D}$ 被优化使 $\mathcal{L}_{D}$ 最小;
- $G$ 被优化使 $\mathcal{L}_{cls}$ 最小、$\mathcal{L}_{D}$ 最大;
Note:
$\mathcal{L}_{D}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)=-\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log \left(D\left(G\left(\mathbf{x}_{s}\right)\right)\right)\right]-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(G\left(\mathbf{x}_{t}\right)\right)\right)\right]$
2 引入
当前工作的限制:现在存在的对齐方式没有刻意的设计为最终的分类任务服务。
对比:
分类任务本质:训练网络提取类鉴别特征 ===》本文:将目标特征与 任务区分源特征[类信息] 对齐 ,而忽略与任务无关的源特征;
Figure1 (a) :
- 域对齐任务与分类任务是并行的;
- 思想:通过学习域不变特征,减少域间隙,使得在源域上训练的分类器能有效的使用到目标域;
- 缺点:简单的域对齐,可能污染分类特征;
3 方法
3.1 工作对比
对比如下:

- $f^{t}$ 代表目标域特征;
- $f^{s}$ 代表源域分类特征,$f^{s}_{n}$ 代表源域任务无关特征,$f^{s}_{p}$ 代表源域任务相关特征;
3.2 ToAlign 方法介绍
3.2.1 任务相关源特征
分类器分类权重:
$\mathbf{w}^{c l s}=\frac{\partial y^{k}}{\partial \mathbf{f}}$
任务相关特征:
$\mathbf{f}_{p}=\mathbf{w}_{p}^{c l s} \odot \mathbf{f}=s \mathbf{w}^{c l s} \odot \mathbf{f}$
$ s=\sqrt{\frac{\|\mathbf{f}\|_{2}^{2}}{\left\|\mathbf{w}^{c l s} \odot \mathbf{f}\right\|_{2}^{2}}}=\sqrt{\frac{\sum_{m=1}^{M} f_{m}^{2}}{\sum_{m=1}^{M}\left(w_{m}^{c l s} f_{m}\right)^{2}}}$
Note:任务无关特征可以表示为 $\mathbf{f}_{n}=-\mathbf{w}_{p}^{c l s} \odot \mathbf{f}$,其中 $-\mathbf{w}_{p}^{c l s}$ 会小,与任务相关的有较大的 $\mathbf{w}_{p}^{c l s}$;
3.2.2 类级域对抗
对抗:
$\mathcal{L}_{D}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)=-\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log \left(D\left(G^{p}\left(\mathbf{x}_{s}\right)\right)\right)\right]-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(G\left(\mathbf{x}_{t}\right)\right)\right)\right]$
其中,$G^{p}\left(\mathbf{x}_{s}\right)=\mathbf{f}_{p}^{s}$ 表示源 $\mathbf{x}_{s}$ 的正特征。
论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》的更多相关文章
- 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》
论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...
- 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》
论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...
- 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》
论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...
- 论文笔记:Unsupervised Domain Adaptation by Backpropagation
14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...
- CVPR2020论文解读:三维语义分割3D Semantic Segmentation
CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3 ...
- 迁移学习(JDDA) 《Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation》
论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain ad ...
- Domain Adaptation (3)论文翻译
Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...
- 《Stereo R-CNN based 3D Object Detection for Autonomous Driving》论文解读
论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原 ...
- 自监督学习(Self-Supervised Learning)多篇论文解读(下)
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...
- 自监督学习(Self-Supervised Learning)多篇论文解读(上)
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以 ...
随机推荐
- c#在代码中再次调用按钮点击事件
在一个按钮事件中调用另一个按钮(button1)的点击事件,可以直接如下: button1.PerformClick() 也称之为 以编程方式调用按钮的click事件
- 解决 使用 params 传递参数 必须 加上 name
{path:'/blog',name:'blog',params:{is:true}}
- 数据库tempdb的事物日志已满,原因为“ACTIVE_TRANSACTION”
系统运行过程中,突然报错数据库tempdb的事物日志已满,原因为"ACTIVE_TRANSACTION".导致所有业务崩溃. 接到报警后,进入数据库服务器.检查硬盘空间正常,于是登 ...
- phpExcel常用方法详解
phpExcel常用方法详解[附有php导出excel加超级链接] 发表于4年前(2012-07-20 12:57) 阅读(510) | 评论(0) 0人收藏此文章, 我要收藏 赞0 http://w ...
- jenkins - Asp.net 环境搭建(Windows)
jenkins - Asp.net 环境搭建(Windows) 安装环境 通过 Chocolatey自动安装 choco install ojdkbuild11 #或 choco install jd ...
- LINUX配置固定IP以及DNS
配置固定ip #vim /etc/sysconfig/network-scripts/ifcfg-ens33 TYPE=EthernetPROXY_METHOD=noneBROWSER_ONLY=no ...
- 3DMAX2023卸载方法,如何完全彻底卸载删除清理干净3dmax各种残留注册表和文件?【转载】
3dmax2023卸载重新安装方法,使用清理卸载工具箱完全彻底删除干净3dmax2023各种残留注册表和文件.3dmax2023显示已安装或者报错出现提示安装未完成某些产品无法安装的问题,怎么完全彻底 ...
- Redis各个客户端的对比
[Spring RedisTemplate 的底层一开始使用Jedis.但是自从SpringBoot2开始,底层开始使用了Lettuce,故不算在内] [题外话:如果要使用Spring来集成对Redi ...
- ReactHooks_useState
import { useState } from "react"; import './App.css'; function App() { const [redBorder, ...
- MongoDB 相关的一些操作
一. 在 MongoDB Compass中输入条件查询数据 {"src":"小车"} // = 该值 {"src":{$ ...