论文信息

论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation
论文作者:Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, Zhibo Chen
论文来源:NeurIPS 2021
论文地址:download 
论文代码:download

1 域对抗介绍

  域对抗思想:

    $\begin{array}{l}\underset{D}{\operatorname{argmin}} \mathcal{L}_{D}  \\\underset{G}{\operatorname{argmin}} \mathcal{L}_{c l s}-\mathcal{L}_{D}  \\\end{array}$

  即:  

    • $\mathrm{D}$ 被优化使 $\mathcal{L}_{D}$ 最小;
    • $G$ 被优化使 $\mathcal{L}_{cls}$ 最小、$\mathcal{L}_{D}$ 最大;

  Note:

    $\mathcal{L}_{D}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)=-\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log \left(D\left(G\left(\mathbf{x}_{s}\right)\right)\right)\right]-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(G\left(\mathbf{x}_{t}\right)\right)\right)\right]$

2 引入

  当前工作的限制:现在存在的对齐方式没有刻意的设计为最终的分类任务服务。

  对比:

  

  分类任务本质:训练网络提取类鉴别特征 ===》本文:将目标特征与 任务区分源特征[类信息] 对齐 ,而忽略与任务无关的源特征;

  Figure1 (a) :

    • 域对齐任务与分类任务是并行的;
    • 思想:通过学习域不变特征,减少域间隙,使得在源域上训练的分类器能有效的使用到目标域;
    • 缺点:简单的域对齐,可能污染分类特征;

  

3 方法

3.1 工作对比

  对比如下:

  
  Note:[ 类级别 ]
    • $f^{t}$ 代表目标域特征;
    • $f^{s}$ 代表源域分类特征,$f^{s}_{n}$ 代表源域任务无关特征,$f^{s}_{p}$ 代表源域任务相关特征;
 
  本文:通过在分类任务诱导的元知识的指导下进行特征对齐,使目标特征与任务识别源特征(即 “postive” 特征)对齐,以避免来自任务无关特征(即  “negative ”  特征)的干扰;

3.2 ToAlign 方法介绍

3.2.1 任务相关源特征

  分类器分类权重:

    $\mathbf{w}^{c l s}=\frac{\partial y^{k}}{\partial \mathbf{f}}$

  任务相关特征:

    $\mathbf{f}_{p}=\mathbf{w}_{p}^{c l s} \odot \mathbf{f}=s \mathbf{w}^{c l s} \odot \mathbf{f}$

    $ s=\sqrt{\frac{\|\mathbf{f}\|_{2}^{2}}{\left\|\mathbf{w}^{c l s} \odot \mathbf{f}\right\|_{2}^{2}}}=\sqrt{\frac{\sum_{m=1}^{M} f_{m}^{2}}{\sum_{m=1}^{M}\left(w_{m}^{c l s} f_{m}\right)^{2}}}$

  Note:任务无关特征可以表示为 $\mathbf{f}_{n}=-\mathbf{w}_{p}^{c l s} \odot \mathbf{f}$,其中 $-\mathbf{w}_{p}^{c l s}$ 会小,与任务相关的有较大的 $\mathbf{w}_{p}^{c l s}$;

3.2.2 类级域对抗

  对抗:

    $\mathcal{L}_{D}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)=-\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log \left(D\left(G^{p}\left(\mathbf{x}_{s}\right)\right)\right)\right]-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(G\left(\mathbf{x}_{t}\right)\right)\right)\right]$

  其中,$G^{p}\left(\mathbf{x}_{s}\right)=\mathbf{f}_{p}^{s}$ 表示源 $\mathbf{x}_{s}$ 的正特征。

 

论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》的更多相关文章

  1. 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》

    论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...

  2. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  3. 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》

    论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...

  4. 论文笔记:Unsupervised Domain Adaptation by Backpropagation

    14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...

  5. CVPR2020论文解读:三维语义分割3D Semantic Segmentation

    CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation  for 3 ...

  6. 迁移学习(JDDA) 《Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation》

    论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain ad ...

  7. Domain Adaptation (3)论文翻译

    Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...

  8. 《Stereo R-CNN based 3D Object Detection for Autonomous Driving》论文解读

    论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原 ...

  9. 自监督学习(Self-Supervised Learning)多篇论文解读(下)

    自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...

  10. 自监督学习(Self-Supervised Learning)多篇论文解读(上)

    自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以 ...

随机推荐

  1. 时间序列 data_range()

    pd.date_range( start=None,#开始时间 end=None,#截止时间 periods=None,#总长度 freq=None,#时间间隔 tz=None,#时区 normali ...

  2. spring boot读取本地文件

    File file = ResourceUtils.getFile("classpath:face/1112.txt"); InputStream inputStream = ne ...

  3. 【SQL Server】存储过程带参数输出——output

    在SQL Server 中,如果要用一个存储过程返回字符串应该怎么做?用output参数. 错误方式 接下来,展示一下,常见的错误方法 CREATE PROCEDURE testString AS B ...

  4. js任务执行顺序

    JS 线程简述 js是单线程的,一次只能执行一个任务,执行完毕后才能继续下一个. js执行任务的方式也叫作同步执行,同步和异步与我们平时理解的不太一样,平时的同步我们会认为是多个事情一起做,但是在js ...

  5. Linux基础第十章:系统安全及应用

    目录 一.账户安全措施 1.账户管理 2.锁定配置文件 3.清除历史记录 二.sudo 1.sudo概念及优点 2.使用sudo 3.sudo实操演示 4.设置sudo别名 5.sudo特别注意 一. ...

  6. D. Steps to One

    题意 初始有一个空数组\(a\),接下来每次操作会这么做: 在\([1,n]\)中选择一个数,将其拼接在数组\(a\)后. 计算数组\(a\)的\(\gcd\). 如果结果是\(1\),退出. 否则, ...

  7. DAST精简代码

    先训练G:先不计算D的梯度: 判别器输入类型为(源域,0)或者(目标域,1),输出图片为真实图片(源域)的概率值for param in model_D.parameters(): # model_D ...

  8. Calendar设定月份时要注意日期

    先看下代码 public static void main(String[] args) { int dataMonth = 4; DateFormat dateFormat = new Simple ...

  9. UEC++学习(1)

    第三章 流程控制 第一节 C++和蓝图循环 ForLoop蓝图节点相当于C++中的for循环,ForeLoopWithBreak节点相当于for循环体中加了break语句,当触发某个条件时直接结束. ...

  10. Spring Cloud学习记录

    Eureka和zookeeper都是注册中心为什么zookeeper不适合? 1.CAP原则.一致性,可用性,分区容错性,最多满足两种.zookeeper遵循CP原则,实际项目中不应该为了一致性失去可 ...