论文信息

论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation
论文作者:Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, Zhibo Chen
论文来源:NeurIPS 2021
论文地址:download 
论文代码:download

1 域对抗介绍

  域对抗思想:

    $\begin{array}{l}\underset{D}{\operatorname{argmin}} \mathcal{L}_{D}  \\\underset{G}{\operatorname{argmin}} \mathcal{L}_{c l s}-\mathcal{L}_{D}  \\\end{array}$

  即:  

    • $\mathrm{D}$ 被优化使 $\mathcal{L}_{D}$ 最小;
    • $G$ 被优化使 $\mathcal{L}_{cls}$ 最小、$\mathcal{L}_{D}$ 最大;

  Note:

    $\mathcal{L}_{D}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)=-\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log \left(D\left(G\left(\mathbf{x}_{s}\right)\right)\right)\right]-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(G\left(\mathbf{x}_{t}\right)\right)\right)\right]$

2 引入

  当前工作的限制:现在存在的对齐方式没有刻意的设计为最终的分类任务服务。

  对比:

  

  分类任务本质:训练网络提取类鉴别特征 ===》本文:将目标特征与 任务区分源特征[类信息] 对齐 ,而忽略与任务无关的源特征;

  Figure1 (a) :

    • 域对齐任务与分类任务是并行的;
    • 思想:通过学习域不变特征,减少域间隙,使得在源域上训练的分类器能有效的使用到目标域;
    • 缺点:简单的域对齐,可能污染分类特征;

  

3 方法

3.1 工作对比

  对比如下:

  
  Note:[ 类级别 ]
    • $f^{t}$ 代表目标域特征;
    • $f^{s}$ 代表源域分类特征,$f^{s}_{n}$ 代表源域任务无关特征,$f^{s}_{p}$ 代表源域任务相关特征;
 
  本文:通过在分类任务诱导的元知识的指导下进行特征对齐,使目标特征与任务识别源特征(即 “postive” 特征)对齐,以避免来自任务无关特征(即  “negative ”  特征)的干扰;

3.2 ToAlign 方法介绍

3.2.1 任务相关源特征

  分类器分类权重:

    $\mathbf{w}^{c l s}=\frac{\partial y^{k}}{\partial \mathbf{f}}$

  任务相关特征:

    $\mathbf{f}_{p}=\mathbf{w}_{p}^{c l s} \odot \mathbf{f}=s \mathbf{w}^{c l s} \odot \mathbf{f}$

    $ s=\sqrt{\frac{\|\mathbf{f}\|_{2}^{2}}{\left\|\mathbf{w}^{c l s} \odot \mathbf{f}\right\|_{2}^{2}}}=\sqrt{\frac{\sum_{m=1}^{M} f_{m}^{2}}{\sum_{m=1}^{M}\left(w_{m}^{c l s} f_{m}\right)^{2}}}$

  Note:任务无关特征可以表示为 $\mathbf{f}_{n}=-\mathbf{w}_{p}^{c l s} \odot \mathbf{f}$,其中 $-\mathbf{w}_{p}^{c l s}$ 会小,与任务相关的有较大的 $\mathbf{w}_{p}^{c l s}$;

3.2.2 类级域对抗

  对抗:

    $\mathcal{L}_{D}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)=-\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log \left(D\left(G^{p}\left(\mathbf{x}_{s}\right)\right)\right)\right]-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(G\left(\mathbf{x}_{t}\right)\right)\right)\right]$

  其中,$G^{p}\left(\mathbf{x}_{s}\right)=\mathbf{f}_{p}^{s}$ 表示源 $\mathbf{x}_{s}$ 的正特征。

 

论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》的更多相关文章

  1. 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》

    论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...

  2. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  3. 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》

    论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...

  4. 论文笔记:Unsupervised Domain Adaptation by Backpropagation

    14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...

  5. CVPR2020论文解读:三维语义分割3D Semantic Segmentation

    CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation  for 3 ...

  6. 迁移学习(JDDA) 《Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation》

    论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain ad ...

  7. Domain Adaptation (3)论文翻译

    Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...

  8. 《Stereo R-CNN based 3D Object Detection for Autonomous Driving》论文解读

    论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原 ...

  9. 自监督学习(Self-Supervised Learning)多篇论文解读(下)

    自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...

  10. 自监督学习(Self-Supervised Learning)多篇论文解读(上)

    自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以 ...

随机推荐

  1. c#在代码中再次调用按钮点击事件

    在一个按钮事件中调用另一个按钮(button1)的点击事件,可以直接如下: button1.PerformClick() 也称之为 以编程方式调用按钮的click事件

  2. 解决 使用 params 传递参数 必须 加上 name

    {path:'/blog',name:'blog',params:{is:true}}

  3. 数据库tempdb的事物日志已满,原因为“ACTIVE_TRANSACTION”

    系统运行过程中,突然报错数据库tempdb的事物日志已满,原因为"ACTIVE_TRANSACTION".导致所有业务崩溃. 接到报警后,进入数据库服务器.检查硬盘空间正常,于是登 ...

  4. phpExcel常用方法详解

    phpExcel常用方法详解[附有php导出excel加超级链接] 发表于4年前(2012-07-20 12:57) 阅读(510) | 评论(0) 0人收藏此文章, 我要收藏 赞0 http://w ...

  5. jenkins - Asp.net 环境搭建(Windows)

    jenkins - Asp.net 环境搭建(Windows) 安装环境 通过 Chocolatey自动安装 choco install ojdkbuild11 #或 choco install jd ...

  6. LINUX配置固定IP以及DNS

    配置固定ip #vim /etc/sysconfig/network-scripts/ifcfg-ens33 TYPE=EthernetPROXY_METHOD=noneBROWSER_ONLY=no ...

  7. 3DMAX2023卸载方法,如何完全彻底卸载删除清理干净3dmax各种残留注册表和文件?【转载】

    3dmax2023卸载重新安装方法,使用清理卸载工具箱完全彻底删除干净3dmax2023各种残留注册表和文件.3dmax2023显示已安装或者报错出现提示安装未完成某些产品无法安装的问题,怎么完全彻底 ...

  8. Redis各个客户端的对比

    [Spring RedisTemplate 的底层一开始使用Jedis.但是自从SpringBoot2开始,底层开始使用了Lettuce,故不算在内] [题外话:如果要使用Spring来集成对Redi ...

  9. ReactHooks_useState

    import { useState } from "react"; import './App.css'; function App() {   const [redBorder, ...

  10. MongoDB 相关的一些操作

    一. 在 MongoDB Compass中输入条件查询数据 {"src":"小车"}           // = 该值 {"src":{$ ...