cs231n spring 2017 lecture3 Loss Functions and Optimization
1. Loss function是用来量化评估当前预测的好坏,loss function越小表明预测越好。
几种典型的loss function:
1)Multiclass SVM loss:一般的SVM是针对0、1两类标签,现在是把它拓展到n类标签。它的物理意义是:现在要预测一个样本的标签,根据之前训练出的权重求出这个样本在所有标签的得分,正确的标签的得分如果大于其他标签的得分(往往还会加一个safety margin,就是要求要足够大),则loss function不增加;否则loss function就会增加其他标签的得分超过正确标签的得分的差值。这种loss function的取值从0到无穷大。在初始化训练的时候,权重W往往被设计成很小的随机数,所以计算出的每个标签的得分都接近0,在这种情况下,如果标签数为n,正确的标签和其他标签比较了n-1次,每次比较的得分差值都小于safety margin(假设safety margin是1),则loss function的值为n-1,
2) Softmax (cross-entropy) loss :在深度学习里很常用。把计算出的分数带入到softmax函数里,这个描述了“概率”,最终的loss function就是对softmax函数取负log。这里的概率加了引号是因为这只是一种对0~1之间取值且累加和为1的变量的诠释。事实上,当正则化项的权重增加时,优化出的W会变小,对于每个类别softmax loss会更接近。所以softmax loss对不同类别的排序才重要,具体数值并不重要。
两种loss funciton的实际表现差不多,不同的人有不同偏好。这两种loss function的差别,对于SVM loss来说,标签贴对就可以了,继续增加得分并不会减小loss,因为反正都已经取0了;但对于Softmax loss来说,正确标签的得分越高越好,错误标签的得分越低越好。
2. 正则化(Regularization)。同样的loss值会对应很多组不同的权重W,正则化描述了对参数的某种偏好,例如奥卡姆剃刀原则。这时候Loss function = Data loss + Regularzation。可以这么理解正则化:比如用多项式拟合数据,有两种方式抑制过拟合,一种是直接限定多项式的次数,另一种是不限定次数,但是在loss function里增加跟次数相关的一项,它会使算法更倾向于找低次数的多项式。正则化就是后一种方式。正则化可以帮助解决过拟合的问题。一般正则化项只包含W,不包含b。
3. 优化的关键是求导,有两种方式求导,一是数值方法,二是解析方法。实际应用中,用解析的方式求导,用数值的方式验证求导是否正确。每一步的迭代距离(learning rate)是hyperparameter,需要提前设定,Justin Johson说他调参的时候永远是最先检查learning rate是否大体正确。
4. Stochastic Gradient Descent (SGD):loss function是所有特征相加,当特征非常多的时候,计算就会很慢(比如图像,每个像素都是一个特征),这时候可以用一个子集(一般32/64/128个特征)来计算。
5. 图像特征:
1)Color Histogram,评估各种颜色在图像中的比重。
2)Histogram of Oriented Gradients (HoG),把图像分成一个个小方格,在每个小方格内提取边,设定边有9种朝向,评估图像局部的边界特征。物体识别中很有用。
3)Bags of Words,把图像分成一个个小方格(或者提取特征点后在特征点附近取小方格),每个方格可以用一个编码来描述,编码需要自己设计,所有的编码组成一个词典。这是从自然语言处理中衍生过来的。
cs231n spring 2017 lecture3 Loss Functions and Optimization的更多相关文章
- cs231n spring 2017 lecture3 Loss Functions and Optimization 听课笔记
1. Loss function是用来量化评估当前预测的好坏,loss function越小表明预测越好. 几种典型的loss function: 1)Multiclass SVM loss:一般的S ...
- CS231n笔记 Lecture 3 Loss Functions and Optimization
这一讲总体上就是引入Loss Function的概念,以及让大家对优化有一个初步的认识,和其他课程里面说的内容大同小异. Loss function Multiclass svm loss multi ...
- cs231n spring 2017 lecture13 Generative Models 听课笔记
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture13 Generative Models
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture11 Detection and Segmentation
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种“Unpooling”.“Transpose Conv ...
- cs231n spring 2017 lecture7 Training Neural Networks II
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
随机推荐
- NFS工作原理简述
1.首先用户访问网站程序,由程序在NFS客户端发出存取NFS文件的请求,NFS客户端上的RPC服务通过网络向NFS服务器的RPC服务的111端口发出NFS文件存取的询问请求. 2.NFS服务器的RPC ...
- ansible删除目录下所有内容
使用ansible的同学都知道,ansible只支持新增删除具体的某个文件夹或者文件,如下所示: 1. 创建目录,删除整个目录 - name: Create a directory if it doe ...
- tensorflow 损失计算--MSN
1.tf.losses.mean_squared_error函数 tf.losses.mean_squared_error( labels, predictions, weights=1.0, sco ...
- 第二季 第四集 part3
obj.insertAdjancetHtlm("beforeend"(位置), r(内容)) insertAdjacentHTML() 将指定的文本解析为HTML或XML,并将结果 ...
- frp内网穿透,centos7+frp成功样例
准备工作: 阿里云服务器一台,备案域名一个,本地服务器一台(本人用的虚拟机centos7) frp文件:frp_0.22.0_linux_amd64.tar.gz 链接:https://pan.bai ...
- idea抛出异常:org.apache.shiro.authc.AuthenticationException
问题描述 继续在ubuntu下折腾,终于将web项目的所有的东西配置好了,然后运行项目,满怀期待的心情登录系统的时候,突然出现了这个bug,吓得我差点从椅子上跳起来,这两天遇到的bug实在是太多了.. ...
- linux-线程同步之信号量
1.任务:用户从终端输入任意字符然后统计字符个数显示,输入end则结束 2.使用多线程实现:主线程获取用户输入并判断是否退出,子线程计数 #include <stdio.h> #inclu ...
- VMware vSphere虚拟化-VMware ESXi 5.5组件添加本地磁盘--虚拟机扩容
本地存储器可以是位于ESXi主机内部的内部硬盘,也可以是位于主机之外并直接通过SAS或者SATA等协议连接在主机上的外部存储系统.本地存储不需要存储网络即可与主机进行通信,只需要一根连接到存储单元的电 ...
- C盘满了解决办法之pagefile.sys文件
pagefile.sys文件一般存在于C盘,只有点击了隐藏属性才能看见. 这个文件一般比较大,它是系统创建虚拟内存页面的文件.平时大家使用软件的时候对于产生大量的临时数据,这些数据需要占用大量内存,如 ...
- 脚本kafka-configs.sh用法解析
引用博客来自李志涛:https://www.cnblogs.com/lizherui/p/12275193.html 前言介绍 网络上针对脚本kafka-configs.sh用法,也有一些各种文章,但 ...