@description@

给定一个含 N 个数的序列,Alice 与 Bob 在博弈。Alice 先手,轮流进行 N 次操作。

每一次操作会选择一个之前未选中的数,且与上一个玩家选择的数相邻。

如果是第一次或者上一次选择的数周围没有未被选中的数,则可以任意选择一个数。

两个人都想要最大化自己所选择的数之和,且都采取最优策略,求最后 Alice 选择的数之和与 Bob 选择的数之和。

原题连接。

@solution@

首先考虑第一次操作对应的几种可能性。

第一,先手可以直接取最左边/最右边,则接下来的方案唯一。

第二,先手选择一个中间的数 x,后手决定选 x 的左边还是右边。

考虑第二种情况,如果 x 的左边/右边有奇数个数,先手可能会被动地变成后手。

而此时,后手存在一种可能的取数方法,对应着先手一开始取最左边/最右边的方案。

也就是说此时后手的最优策略一定不劣于先手一开始取最左边/最右边的方案,这对先手而言不利,所以先手绝对不会让出主动权。

那么这意味着如果先手选择第二类情况,那么选择的那个 x 的左边/右边都应有偶数个数。

而 N 为偶数时这是不可能办到的,即 N 为偶数时先手一开始只能选择最左边/最右边。

我们接下来考虑 N 为奇数。

此时流程变为:"先手取走一个偶数位置的数" -> "后手选择左边/右边,先手取走偶数位置的数,后手取走奇数位置的数" -> "迭代到区间的子问题" -> ... -> "先手取走区间内奇数位置的数(取走最左边/最右边的数),后手取走偶数位置的数"。

假如最后奇数位置上的数在区间 [l, r] 内,那么先手取走的数应是 "[1...l-1] 中的偶数位置" + "[l...r] 中的奇数位置" + "[r+1...N] 的偶数位置"。

不妨看成先选择全部偶数位置的数,然后选择一个区间 [l, r] 将其奇偶位置的选择状况反转。

先手需要最大化 [l, r] 中奇数位置的和 - 偶数位置的和,可以通过一些处理写成前缀和 s[r] - s[l-1] 的形式。

考虑一下二分答案:假如 s[r] - s[l-1] >= x,我们就可以知道哪些区间是合法。

可以通过手玩发现如果有些合法区间首尾相接,即存在 [l1, r1], [l2, r2], ..., [lk, rk] 使得 \(r_i + 1 = l_{i+1} - 1\),那么先手就可以最终落到某一个区间中,视为检验成功

归纳法即可证。

怎么快速检验呢?可以使用 dp。记 dp[i](此处默认 i 为偶数)表示 [1, i] 是否能划分成若干合法区间,则枚举 j < i 且 dp[j] 为真,如果有 s[i-1] - s[j] >= x 即可转移。

我们可以维护 dp[j] 为真的 min{s[j]} 来方便实现转移,这样一来甚至连 dp 都不存下来。

@accepted code@

#include <cstdio>
#include <algorithm>
using namespace std; const int MAXN = 300000;
const int INF = (1 << 30); int s[2], sum[MAXN + 5], a[MAXN + 5], N;
bool check(int x) {
int k = 0;
for(int i=2;i<=N;i+=2) {
if( sum[i-1] - k >= x )
k = min(k, sum[i]);
}
return sum[N] - k >= x;
} int main() {
scanf("%d", &N);
for(int i=1;i<=N;i++)
scanf("%d", &a[i]), s[i & 1] += a[i];
if( N % 2 == 0 )
printf("%d %d\n", max(s[0], s[1]), min(s[0], s[1]));
else {
for(int i=1;i<=N;i++) sum[i] = sum[i-1] + (i & 1 ? a[i] : -a[i]);
int le = 0, ri = s[0] + s[1];
while( le < ri ) {
int mid = (le + ri + 1) >> 1;
if( check(mid) ) le = mid;
else ri = mid - 1;
}
printf("%d %d\n", s[0] + le, s[1] - le);
}
}

@details@

我才不会说我一开始想到了二分答案随后就把它叉掉了。

最后写了个神奇的线段树做法,发现过不了,然后把它叉掉过后又想起了二分答案其实可以做。

感觉脑子需要修理一下,最近短路的现象太频繁了。

@atcoder - AGC026F@ Manju Game的更多相关文章

  1. p_b_p_b 杂题选讲

    [ARC119F] AtCoder Express 3 [ARC117F] Gateau 考虑二分答案,对前缀和建差分约束 \(\text{check}\) ,但是用 \(\text{spfa}\) ...

  2. Atcoder Grand Contest 026 (AGC026) F - Manju Game 博弈,动态规划

    原文链接www.cnblogs.com/zhouzhendong/AGC026F.html 前言 太久没有发博客了,前来水一发. 题解 不妨设先手是 A,后手是 B.定义 \(i\) 为奇数时,\(a ...

  3. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  4. AtCoder Grand Contest 001 C Shorten Diameter 树的直径知识

    链接:http://agc001.contest.atcoder.jp/tasks/agc001_c 题解(官方): We use the following well-known fact abou ...

  5. AtCoder Regular Contest 082

    我都出了F了……结果并没有出E……atcoder让我差4分上橙是啥意思啊…… C - Together 题意:把每个数加1或减1或不变求最大众数. #include<cstdio> #in ...

  6. AtCoder Regular Contest 069 D

    D - Menagerie Time limit : 2sec / Memory limit : 256MB Score : 500 points Problem Statement Snuke, w ...

  7. AtCoder Regular Contest 076

    在湖蓝跟衡水大佬们打的第二场atcoder,不知不觉一星期都过去了. 任意门 C - Reconciled? 题意:n只猫,m只狗排队,猫与猫之间,狗与狗之间是不同的,同种动物不能相邻排,问有多少种方 ...

  8. AtCoder Grand Contest 016

    在雅礼和衡水的dalao们打了一场atcoder 然而窝好菜啊…… A - Shrinking 题意:定义一次操作为将长度为n的字符串变成长度n-1的字符串,且变化后第i个字母为变化前第i 或 i+1 ...

  9. AtCoder Beginner Contest 069【A,水,B,水,C,数学,D,暴力】

    A - K-City Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement In K-city, ...

随机推荐

  1. vue绑定数据之前 会看到源代码

    http://blog.csdn.net/fengjingyu168/article/details/72915468 VUE绑定数据闪现问题 问题描述如下: 1.在HTML中使用Vue为div绑定数 ...

  2. CS0016: 未能写入输出文件“c:\Windows\Microsoft.NET\Framework\v4.0.30319\Temporary ASP.NET Files\root\ad888a2

    http://wenwen.sogou.com/z/q445150234.htm IIS_USRS

  3. Kubernetes学习笔记(五):卷

    简介 卷是Pod的一部分,与Pod共享生命周期.它不是独立的Kubernetes对象,因此不能单独创建. 卷提供的存储功能不但可以解决容器重启后数据丢失的问题,还可以使数据在容器间共享. 一些卷的类型 ...

  4. 关于 Git 拉取GitLab工程报错:Repository not found的问题

    [root@localhost xscan]# git pull fatal: repository 'http://gitlab.***.com/***.git/' not found 原因1: 可 ...

  5. 去掉shiro登录时url里的JSESSIONID https://blog.csdn.net/aofavx/article/details/51701012

    经过查找论坛和分析源码,确认了是在ShiroHttpServletResponse里加上的. 因此继承ShiroHttpServletResponse类,覆盖相应方法,再重写 ShiroFilterF ...

  6. shrio的springboot完整配置

    package com.zys.sys.config; import java.util.HashMap; import java.util.Map; import javax.servlet.Fil ...

  7. MySQL8离线安装

    现在离线安装包: 登录官网准备下载 https://dev.mysql.com/downloads/mysql/ 2,开始下载 解压安装包: 开始解压: 解压完成: 新建init文件: 在解压目录下创 ...

  8. Golang模拟用户登陆,突破教务系统

    目录 一.Golang模拟用户登陆,突破教务系统 1.1 请求登陆页面 1.2 抓包分析登陆请求 1.3 golang使用js引擎合成salt 1.4 模拟表单提交,完成登陆 1.5 进入成绩查询页, ...

  9. Flutter,webview里面实现上传和下载的功能

    前提:Flutter 与 webview(vue) 一起开发的项目 开始的时候并没有想到什么移动端的,所以上传就用input,下载就用iframe来实现,然而真机实测的时候,input那个方法IOS支 ...

  10. JAVASE(七)面向对象:封装性(特性之一)、构造器、属性、关键字

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一.封装性 1.为什么要使用封装性? 创建对象以后,可以通过对象.属性名的方法进行赋值.只能限制数据的类 ...